CMC: Combining Multiple Schema-Matching Strategies Based on Credibility Prediction View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

KeWei Tu , Yong Yu

ABSTRACT

Schema matching is a key operation in data engineering. Combining multiple matching strategies is a very promising technique for schema matching. To overcome the limitations of existing combination systems and to achieve better performances, in this paper the CMC system is proposed, which combines multiple matchers based on credibility prediction. We first predict the accuracy of each matcher on the current matching task, and accordingly calculate each matcher’s credibility. These credibilities are then used as weights in aggregating the matching results of different matchers into a combined one. Our experiments on real world schemas validate the merits of our system. More... »

PAGES

888-893

Book

TITLE

Database Systems for Advanced Applications

ISBN

978-3-540-25334-1
978-3-540-32005-0

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11408079_80

DOI

http://dx.doi.org/10.1007/11408079_80

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035216319


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Department of Computer Science and Engineering, Shanghai JiaoTong University, 200030, Shanghai, P.R.China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tu", 
        "givenName": "KeWei", 
        "id": "sg:person.015275707456.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275707456.07"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Shanghai Jiao Tong University", 
          "id": "https://www.grid.ac/institutes/grid.16821.3c", 
          "name": [
            "Department of Computer Science and Engineering, Shanghai JiaoTong University, 200030, Shanghai, P.R.China"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yu", 
        "givenName": "Yong", 
        "id": "sg:person.012472075600.64", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012472075600.64"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/3-540-47961-9_32", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002256229", 
          "https://doi.org/10.1007/3-540-47961-9_32"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s007780100057", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016179494", 
          "https://doi.org/10.1007/s007780100057"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/b978-155860869-6/50060-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016645925"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1145/376284.375731", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063169381"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Schema matching is a key operation in data engineering. Combining multiple matching strategies is a very promising technique for schema matching. To overcome the limitations of existing combination systems and to achieve better performances, in this paper the CMC system is proposed, which combines multiple matchers based on credibility prediction. We first predict the accuracy of each matcher on the current matching task, and accordingly calculate each matcher\u2019s credibility. These credibilities are then used as weights in aggregating the matching results of different matchers into a combined one. Our experiments on real world schemas validate the merits of our system.", 
    "editor": [
      {
        "familyName": "Zhou", 
        "givenName": "Lizhu", 
        "type": "Person"
      }, 
      {
        "familyName": "Ooi", 
        "givenName": "Beng Chin", 
        "type": "Person"
      }, 
      {
        "familyName": "Meng", 
        "givenName": "Xiaofeng", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11408079_80", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-25334-1", 
        "978-3-540-32005-0"
      ], 
      "name": "Database Systems for Advanced Applications", 
      "type": "Book"
    }, 
    "name": "CMC: Combining Multiple Schema-Matching Strategies Based on Credibility Prediction", 
    "pagination": "888-893", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035216319"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11408079_80"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a7c13dc9bf4fb405e33feb2c6a5451d31bb7db127e4090fe503de1354614c707"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin, Heidelberg", 
      "name": "Springer Berlin Heidelberg", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11408079_80", 
      "https://app.dimensions.ai/details/publication/pub.1035216319"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-16T08:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000364_0000000364/records_72865_00000000.jsonl", 
    "type": "Chapter", 
    "url": "https://link.springer.com/10.1007%2F11408079_80"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11408079_80'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11408079_80'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11408079_80'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11408079_80'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11408079_80 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N605f0578bde74835a18db7bd3ecda766
4 schema:citation sg:pub.10.1007/3-540-47961-9_32
5 sg:pub.10.1007/s007780100057
6 https://doi.org/10.1016/b978-155860869-6/50060-3
7 https://doi.org/10.1145/376284.375731
8 schema:datePublished 2005
9 schema:datePublishedReg 2005-01-01
10 schema:description Schema matching is a key operation in data engineering. Combining multiple matching strategies is a very promising technique for schema matching. To overcome the limitations of existing combination systems and to achieve better performances, in this paper the CMC system is proposed, which combines multiple matchers based on credibility prediction. We first predict the accuracy of each matcher on the current matching task, and accordingly calculate each matcher’s credibility. These credibilities are then used as weights in aggregating the matching results of different matchers into a combined one. Our experiments on real world schemas validate the merits of our system.
11 schema:editor Nb30d0f4c63be4a5185b77e204f842e72
12 schema:genre chapter
13 schema:inLanguage en
14 schema:isAccessibleForFree true
15 schema:isPartOf N87782891326948e38aef8346810f88f6
16 schema:name CMC: Combining Multiple Schema-Matching Strategies Based on Credibility Prediction
17 schema:pagination 888-893
18 schema:productId N11f9edb3634d4f16ba69c7feade9d1ef
19 Nb35cf7ff10e1459d8039dd95ae29e03e
20 Ncfa5068ca816416c8dd7a4edf8b186a2
21 schema:publisher N5adc38926ef0406296818cace69ecfd3
22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035216319
23 https://doi.org/10.1007/11408079_80
24 schema:sdDatePublished 2019-04-16T08:33
25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
26 schema:sdPublisher N1634c4c56378445ab5dd8ad26bca1a8b
27 schema:url https://link.springer.com/10.1007%2F11408079_80
28 sgo:license sg:explorer/license/
29 sgo:sdDataset chapters
30 rdf:type schema:Chapter
31 N006afdf0736a440ea19aa7c00d287932 schema:familyName Ooi
32 schema:givenName Beng Chin
33 rdf:type schema:Person
34 N00dba9a2a44140cb84d182373a7193d2 rdf:first Nfa98afa956784bee9bcd086f4831094b
35 rdf:rest rdf:nil
36 N11f9edb3634d4f16ba69c7feade9d1ef schema:name dimensions_id
37 schema:value pub.1035216319
38 rdf:type schema:PropertyValue
39 N1634c4c56378445ab5dd8ad26bca1a8b schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N459142660f9446e899ba2db1333a6878 schema:familyName Zhou
42 schema:givenName Lizhu
43 rdf:type schema:Person
44 N5adc38926ef0406296818cace69ecfd3 schema:location Berlin, Heidelberg
45 schema:name Springer Berlin Heidelberg
46 rdf:type schema:Organisation
47 N605f0578bde74835a18db7bd3ecda766 rdf:first sg:person.015275707456.07
48 rdf:rest Neb4bd54e430047ba92a4819fb005a23a
49 N87782891326948e38aef8346810f88f6 schema:isbn 978-3-540-25334-1
50 978-3-540-32005-0
51 schema:name Database Systems for Advanced Applications
52 rdf:type schema:Book
53 Nb30d0f4c63be4a5185b77e204f842e72 rdf:first N459142660f9446e899ba2db1333a6878
54 rdf:rest Nec8858177f4b432aaa7ddad8df65163a
55 Nb35cf7ff10e1459d8039dd95ae29e03e schema:name readcube_id
56 schema:value a7c13dc9bf4fb405e33feb2c6a5451d31bb7db127e4090fe503de1354614c707
57 rdf:type schema:PropertyValue
58 Ncfa5068ca816416c8dd7a4edf8b186a2 schema:name doi
59 schema:value 10.1007/11408079_80
60 rdf:type schema:PropertyValue
61 Neb4bd54e430047ba92a4819fb005a23a rdf:first sg:person.012472075600.64
62 rdf:rest rdf:nil
63 Nec8858177f4b432aaa7ddad8df65163a rdf:first N006afdf0736a440ea19aa7c00d287932
64 rdf:rest N00dba9a2a44140cb84d182373a7193d2
65 Nfa98afa956784bee9bcd086f4831094b schema:familyName Meng
66 schema:givenName Xiaofeng
67 rdf:type schema:Person
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:person.012472075600.64 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
75 schema:familyName Yu
76 schema:givenName Yong
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012472075600.64
78 rdf:type schema:Person
79 sg:person.015275707456.07 schema:affiliation https://www.grid.ac/institutes/grid.16821.3c
80 schema:familyName Tu
81 schema:givenName KeWei
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015275707456.07
83 rdf:type schema:Person
84 sg:pub.10.1007/3-540-47961-9_32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002256229
85 https://doi.org/10.1007/3-540-47961-9_32
86 rdf:type schema:CreativeWork
87 sg:pub.10.1007/s007780100057 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016179494
88 https://doi.org/10.1007/s007780100057
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/b978-155860869-6/50060-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016645925
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1145/376284.375731 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063169381
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.16821.3c schema:alternateName Shanghai Jiao Tong University
95 schema:name Department of Computer Science and Engineering, Shanghai JiaoTong University, 200030, Shanghai, P.R.China
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...