Approaching the Efficient Frontier: Cooperative Database Retrieval Using High-Dimensional Skylines View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005

AUTHORS

Wolf-Tilo Balke , Jason Xin Zheng , Ulrich Güntzer

ABSTRACT

Cooperative database retrieval is a challenging problem: top k retrieval delivers manageable results only when a suitable compensation function (e.g. a weighted mean) is explicitly given. On the other hand skyline queries offer intuitive querying to users, but result set sizes grow exponentially and hence can easily exceed manageable levels. We show how to combine the advantages of skyline queries and top k retrieval in an interactive query processing scheme using user feedback on a manageable, representative sample of the skyline set to derive most adequate weightings for subsequent focused top k retrieval. Hence, each user’s information needs are conveniently and intuitively obtained, and only a limited set of best matching objects is returned. We will demonstrate our scheme’s efficient performance, manageable result sizes, and representativeness of the skyline. We will also show how to effectively estimate users’ compensation functions using their feedback. Our approach thus paves the way to intuitive and efficient cooperative retrieval with vague query predicates. More... »

PAGES

410-421

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/11408079_37

DOI

http://dx.doi.org/10.1007/11408079_37

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1006882900


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0806", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information Systems", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Electrical Engineering & Computer Science, University of California, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Electrical Engineering & Computer Science, University of California, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Balke", 
        "givenName": "Wolf-Tilo", 
        "id": "sg:person.014313642615.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313642615.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Electrical Engineering & Computer Science, University of California, 94720, Berkeley, CA, USA", 
          "id": "http://www.grid.ac/institutes/grid.47840.3f", 
          "name": [
            "Electrical Engineering & Computer Science, University of California, 94720, Berkeley, CA, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zheng", 
        "givenName": "Jason Xin", 
        "id": "sg:person.015672537021.06", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015672537021.06"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institut f\u00fcr Informatik, Universit\u00e4t T\u00fcbingen, 72076, T\u00fcbingen, Germany", 
          "id": "http://www.grid.ac/institutes/grid.10392.39", 
          "name": [
            "Institut f\u00fcr Informatik, Universit\u00e4t T\u00fcbingen, 72076, T\u00fcbingen, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "G\u00fcntzer", 
        "givenName": "Ulrich", 
        "id": "sg:person.013324511711.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Cooperative database retrieval is a challenging problem: top k retrieval delivers manageable results only when a suitable compensation function (e.g. a weighted mean) is explicitly given. On the other hand skyline queries offer intuitive querying to users, but result set sizes grow exponentially and hence can easily exceed manageable levels. We show how to combine the advantages of skyline queries and top k retrieval in an interactive query processing scheme using user feedback on a manageable, representative sample of the skyline set to derive most adequate weightings for subsequent focused top k retrieval. Hence, each user\u2019s information needs are conveniently and intuitively obtained, and only a limited set of best matching objects is returned. We will demonstrate our scheme\u2019s efficient performance, manageable result sizes, and representativeness of the skyline. We will also show how to effectively estimate users\u2019 compensation functions using their feedback. Our approach thus paves the way to intuitive and efficient cooperative retrieval with vague query predicates.", 
    "editor": [
      {
        "familyName": "Zhou", 
        "givenName": "Lizhu", 
        "type": "Person"
      }, 
      {
        "familyName": "Ooi", 
        "givenName": "Beng Chin", 
        "type": "Person"
      }, 
      {
        "familyName": "Meng", 
        "givenName": "Xiaofeng", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/11408079_37", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-3-540-25334-1", 
        "978-3-540-32005-0"
      ], 
      "name": "Database Systems for Advanced Applications", 
      "type": "Book"
    }, 
    "keywords": [
      "skyline queries", 
      "database retrieval", 
      "query processing scheme", 
      "best matching object", 
      "user's information need", 
      "information needs", 
      "intuitive querying", 
      "query predicates", 
      "skyline set", 
      "cooperative retrieval", 
      "user feedback", 
      "result size", 
      "matching objects", 
      "challenging problem", 
      "compensation function", 
      "manageable results", 
      "retrieval", 
      "queries", 
      "efficient performance", 
      "processing scheme", 
      "skyline", 
      "set size", 
      "manageable level", 
      "limited set", 
      "scheme", 
      "querying", 
      "users", 
      "set", 
      "predicates", 
      "feedback", 
      "objects", 
      "efficient frontier", 
      "adequate weighting", 
      "performance", 
      "advantages", 
      "weighting", 
      "way", 
      "need", 
      "frontier", 
      "function", 
      "size", 
      "results", 
      "representativeness", 
      "levels", 
      "representative sample", 
      "samples", 
      "problem", 
      "approach", 
      "Cooperative database retrieval", 
      "top k retrieval", 
      "k retrieval", 
      "suitable compensation function", 
      "hand skyline queries", 
      "interactive query processing scheme", 
      "subsequent focused top k retrieval", 
      "focused top k retrieval", 
      "manageable result sizes", 
      "users\u2019 compensation functions", 
      "efficient cooperative retrieval", 
      "vague query predicates", 
      "High-Dimensional Skylines"
    ], 
    "name": "Approaching the Efficient Frontier: Cooperative Database Retrieval Using High-Dimensional Skylines", 
    "pagination": "410-421", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1006882900"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/11408079_37"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/11408079_37", 
      "https://app.dimensions.ai/details/publication/pub.1006882900"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:13", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_226.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/11408079_37"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/11408079_37'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/11408079_37'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/11408079_37'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/11408079_37'


 

This table displays all metadata directly associated to this object as RDF triples.

152 TRIPLES      23 PREDICATES      88 URIs      80 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/11408079_37 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 anzsrc-for:0806
4 schema:author N1a9dcc0d04404fbbacb842254b8e8343
5 schema:datePublished 2005
6 schema:datePublishedReg 2005-01-01
7 schema:description Cooperative database retrieval is a challenging problem: top k retrieval delivers manageable results only when a suitable compensation function (e.g. a weighted mean) is explicitly given. On the other hand skyline queries offer intuitive querying to users, but result set sizes grow exponentially and hence can easily exceed manageable levels. We show how to combine the advantages of skyline queries and top k retrieval in an interactive query processing scheme using user feedback on a manageable, representative sample of the skyline set to derive most adequate weightings for subsequent focused top k retrieval. Hence, each user’s information needs are conveniently and intuitively obtained, and only a limited set of best matching objects is returned. We will demonstrate our scheme’s efficient performance, manageable result sizes, and representativeness of the skyline. We will also show how to effectively estimate users’ compensation functions using their feedback. Our approach thus paves the way to intuitive and efficient cooperative retrieval with vague query predicates.
8 schema:editor N7eb9113f95664fb2911dfbce1ab68f56
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree true
12 schema:isPartOf Nc5956c1d12044e2f893261e849c18fc7
13 schema:keywords Cooperative database retrieval
14 High-Dimensional Skylines
15 adequate weighting
16 advantages
17 approach
18 best matching object
19 challenging problem
20 compensation function
21 cooperative retrieval
22 database retrieval
23 efficient cooperative retrieval
24 efficient frontier
25 efficient performance
26 feedback
27 focused top k retrieval
28 frontier
29 function
30 hand skyline queries
31 information needs
32 interactive query processing scheme
33 intuitive querying
34 k retrieval
35 levels
36 limited set
37 manageable level
38 manageable result sizes
39 manageable results
40 matching objects
41 need
42 objects
43 performance
44 predicates
45 problem
46 processing scheme
47 queries
48 query predicates
49 query processing scheme
50 querying
51 representative sample
52 representativeness
53 result size
54 results
55 retrieval
56 samples
57 scheme
58 set
59 set size
60 size
61 skyline
62 skyline queries
63 skyline set
64 subsequent focused top k retrieval
65 suitable compensation function
66 top k retrieval
67 user feedback
68 user's information need
69 users
70 users’ compensation functions
71 vague query predicates
72 way
73 weighting
74 schema:name Approaching the Efficient Frontier: Cooperative Database Retrieval Using High-Dimensional Skylines
75 schema:pagination 410-421
76 schema:productId N13417fbcc82d4c8abc2e4719cf84e49d
77 N8caf42821727477296d3793e5b73c514
78 schema:publisher Na6b3589ddc90477ca70fa0e58b71bb60
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006882900
80 https://doi.org/10.1007/11408079_37
81 schema:sdDatePublished 2022-01-01T19:13
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher N2dd739e75fdc44feb624e591bf080ae4
84 schema:url https://doi.org/10.1007/11408079_37
85 sgo:license sg:explorer/license/
86 sgo:sdDataset chapters
87 rdf:type schema:Chapter
88 N03f6c4133b7f456c8089b38df5a27976 schema:familyName Meng
89 schema:givenName Xiaofeng
90 rdf:type schema:Person
91 N13417fbcc82d4c8abc2e4719cf84e49d schema:name doi
92 schema:value 10.1007/11408079_37
93 rdf:type schema:PropertyValue
94 N1a9dcc0d04404fbbacb842254b8e8343 rdf:first sg:person.014313642615.12
95 rdf:rest N63d81b75f4df43349363e4a85e5bb010
96 N1db79bd894654923bfb4c98759100a01 rdf:first sg:person.013324511711.75
97 rdf:rest rdf:nil
98 N29a8f8ebc32244579b2ac6801381bdd7 rdf:first N03f6c4133b7f456c8089b38df5a27976
99 rdf:rest rdf:nil
100 N2dd739e75fdc44feb624e591bf080ae4 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 N4edb84c64fea4a41af2c6e91c3e93695 schema:familyName Ooi
103 schema:givenName Beng Chin
104 rdf:type schema:Person
105 N60cfeec146854615ab0aa5c0440d680c schema:familyName Zhou
106 schema:givenName Lizhu
107 rdf:type schema:Person
108 N63d81b75f4df43349363e4a85e5bb010 rdf:first sg:person.015672537021.06
109 rdf:rest N1db79bd894654923bfb4c98759100a01
110 N7eb9113f95664fb2911dfbce1ab68f56 rdf:first N60cfeec146854615ab0aa5c0440d680c
111 rdf:rest N81213a90c5274bfc91a203f2b488097c
112 N81213a90c5274bfc91a203f2b488097c rdf:first N4edb84c64fea4a41af2c6e91c3e93695
113 rdf:rest N29a8f8ebc32244579b2ac6801381bdd7
114 N8caf42821727477296d3793e5b73c514 schema:name dimensions_id
115 schema:value pub.1006882900
116 rdf:type schema:PropertyValue
117 Na6b3589ddc90477ca70fa0e58b71bb60 schema:name Springer Nature
118 rdf:type schema:Organisation
119 Nc5956c1d12044e2f893261e849c18fc7 schema:isbn 978-3-540-25334-1
120 978-3-540-32005-0
121 schema:name Database Systems for Advanced Applications
122 rdf:type schema:Book
123 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
124 schema:name Information and Computing Sciences
125 rdf:type schema:DefinedTerm
126 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
127 schema:name Artificial Intelligence and Image Processing
128 rdf:type schema:DefinedTerm
129 anzsrc-for:0806 schema:inDefinedTermSet anzsrc-for:
130 schema:name Information Systems
131 rdf:type schema:DefinedTerm
132 sg:person.013324511711.75 schema:affiliation grid-institutes:grid.10392.39
133 schema:familyName Güntzer
134 schema:givenName Ulrich
135 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013324511711.75
136 rdf:type schema:Person
137 sg:person.014313642615.12 schema:affiliation grid-institutes:grid.47840.3f
138 schema:familyName Balke
139 schema:givenName Wolf-Tilo
140 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014313642615.12
141 rdf:type schema:Person
142 sg:person.015672537021.06 schema:affiliation grid-institutes:grid.47840.3f
143 schema:familyName Zheng
144 schema:givenName Jason Xin
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015672537021.06
146 rdf:type schema:Person
147 grid-institutes:grid.10392.39 schema:alternateName Institut für Informatik, Universität Tübingen, 72076, Tübingen, Germany
148 schema:name Institut für Informatik, Universität Tübingen, 72076, Tübingen, Germany
149 rdf:type schema:Organization
150 grid-institutes:grid.47840.3f schema:alternateName Electrical Engineering & Computer Science, University of California, 94720, Berkeley, CA, USA
151 schema:name Electrical Engineering & Computer Science, University of California, 94720, Berkeley, CA, USA
152 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...