Engineering Cells for Cell Culture Bioprocessing – Physiological Fundamentals View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006-06-10

AUTHORS

Gargi Seth , Patrick Hossler , Joon Chong Yee , Wei-Shou Hu

ABSTRACT

In the past decade, we have witnessed a tremendous increase in the number of mammaliancell-derived therapeutic proteins with clinical applications. The success of making these life-savingbiologics available to the public is partly due to engineering efforts to enhance process efficiency.To further improve productivity, much effort has been devoted to developing metabolically engineeredproducing cells, which possess characteristics favorable for large-scale bioprocessing. In this articlewe discuss the fundamental physiological basis for cell engineering. Different facets of cellularmechanisms, including metabolism, protein processing, and the balancing pathways of cell growth andapoptosis, contribute to the complex traits of favorable growth and production characteristics. Wepresent our assessment of the current state of the art by surveying efforts that have already beenundertaken in engineering cells for a more robust process. The concept of physiological homeostasisas a key determinant and its implications on cell engineering is emphasized. Integrating thephysiological perspective with cell culture engineering will facilitate attainment of dream cellswith superlative characteristics. More... »

PAGES

119-164

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/10_017

DOI

http://dx.doi.org/10.1007/10_017

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1047147972

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16989260


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Apoptosis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bioreactors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Culture Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Cycle", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Physiological Phenomena", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Energy Metabolism", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombinant Proteins", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Seth", 
        "givenName": "Gargi", 
        "id": "sg:person.01342234704.75", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342234704.75"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hossler", 
        "givenName": "Patrick", 
        "id": "sg:person.01000665101.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000665101.12"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Yee", 
        "givenName": "Joon Chong", 
        "id": "sg:person.0634313525.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634313525.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "id": "sg:person.01064261433.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-06-10", 
    "datePublishedReg": "2006-06-10", 
    "description": "In the past decade, we have witnessed a\u00a0tremendous increase in the number of mammaliancell-derived therapeutic proteins with clinical applications. The success of making these life-savingbiologics available to the public is partly due to engineering efforts to enhance process efficiency.To further improve productivity, much effort has been devoted to developing metabolically engineeredproducing cells, which possess characteristics favorable for large-scale bioprocessing. In this articlewe discuss the fundamental physiological basis for cell engineering. Different facets of cellularmechanisms, including metabolism, protein processing, and the balancing pathways of cell growth andapoptosis, contribute to the complex traits of favorable growth and production characteristics. Wepresent our assessment of the current state of the art by surveying efforts that have already beenundertaken in engineering cells for a\u00a0more robust process. The concept of physiological homeostasisas a\u00a0key determinant and its implications on cell engineering is emphasized. Integrating thephysiological perspective with cell culture engineering will facilitate attainment of dream cellswith superlative characteristics.", 
    "editor": [
      {
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/10_017", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-34006-5", 
        "978-3-540-34007-2"
      ], 
      "name": "Cell Culture Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "engineering cells", 
      "cell engineering", 
      "fundamental physiological basis", 
      "complex traits", 
      "protein processing", 
      "cell culture engineering", 
      "physiological basis", 
      "therapeutic proteins", 
      "large-scale bioprocessing", 
      "engineering efforts", 
      "cells", 
      "key determinant", 
      "traits", 
      "favorable growth", 
      "protein", 
      "pathway", 
      "bioprocessing", 
      "production characteristics", 
      "metabolism", 
      "growth", 
      "productivity", 
      "past decade", 
      "engineering", 
      "tremendous increase", 
      "determinants", 
      "current state", 
      "clinical applications", 
      "efforts", 
      "robust process", 
      "basis", 
      "number", 
      "process", 
      "success", 
      "different facets", 
      "decades", 
      "increase", 
      "implications", 
      "characteristics", 
      "processing", 
      "efficiency", 
      "state", 
      "facets", 
      "perspective", 
      "applications", 
      "assessment", 
      "concept", 
      "process efficiency", 
      "fundamentals", 
      "art", 
      "public", 
      "articlewe", 
      "cellularmechanisms", 
      "balancing pathways", 
      "cell growth andapoptosis", 
      "growth andapoptosis", 
      "andapoptosis", 
      "physiological homeostasisas", 
      "homeostasisas", 
      "thephysiological perspective", 
      "culture engineering", 
      "dream cellswith superlative characteristics", 
      "cellswith superlative characteristics", 
      "superlative characteristics", 
      "Cell Culture Bioprocessing \u2013 Physiological Fundamentals", 
      "Culture Bioprocessing \u2013 Physiological Fundamentals", 
      "Bioprocessing \u2013 Physiological Fundamentals"
    ], 
    "name": "Engineering Cells for Cell Culture Bioprocessing \u2013 Physiological Fundamentals", 
    "pagination": "119-164", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1047147972"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/10_017"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16989260"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/10_017", 
      "https://app.dimensions.ai/details/publication/pub.1047147972"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_403.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/10_017"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/10_017'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/10_017'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/10_017'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/10_017'


 

This table displays all metadata directly associated to this object as RDF triples.

187 TRIPLES      23 PREDICATES      101 URIs      94 LITERALS      17 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/10_017 schema:about N063bde7b907e49279e6a9daf31504927
2 N1a19f0dbbb7347199a1f65eefc65372d
3 N6b5e424d013c4564b41db44e656dc202
4 N6bf9e9d0c3ee4f65b260ceac92795742
5 Na0fd4087963844d09b9ee0da82d03db3
6 Nb40cf3da75534bb1bf139089d69112db
7 Nbbe9105ffcf345ea8d6ca0b5ebcd65f5
8 Ncf26e7a4afa7490fb72845cd565acb46
9 Nd407f095519c4590af24a41b029c8582
10 anzsrc-for:06
11 anzsrc-for:0601
12 schema:author N6493582ed91248ab8ff16e57a87972df
13 schema:datePublished 2006-06-10
14 schema:datePublishedReg 2006-06-10
15 schema:description In the past decade, we have witnessed a tremendous increase in the number of mammaliancell-derived therapeutic proteins with clinical applications. The success of making these life-savingbiologics available to the public is partly due to engineering efforts to enhance process efficiency.To further improve productivity, much effort has been devoted to developing metabolically engineeredproducing cells, which possess characteristics favorable for large-scale bioprocessing. In this articlewe discuss the fundamental physiological basis for cell engineering. Different facets of cellularmechanisms, including metabolism, protein processing, and the balancing pathways of cell growth andapoptosis, contribute to the complex traits of favorable growth and production characteristics. Wepresent our assessment of the current state of the art by surveying efforts that have already beenundertaken in engineering cells for a more robust process. The concept of physiological homeostasisas a key determinant and its implications on cell engineering is emphasized. Integrating thephysiological perspective with cell culture engineering will facilitate attainment of dream cellswith superlative characteristics.
16 schema:editor N8826878ffa5042d7a0121461f4148a11
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf Na5b1e3ca57bf406489c32eedb23ff5c5
21 schema:keywords Bioprocessing – Physiological Fundamentals
22 Cell Culture Bioprocessing – Physiological Fundamentals
23 Culture Bioprocessing – Physiological Fundamentals
24 andapoptosis
25 applications
26 art
27 articlewe
28 assessment
29 balancing pathways
30 basis
31 bioprocessing
32 cell culture engineering
33 cell engineering
34 cell growth andapoptosis
35 cells
36 cellswith superlative characteristics
37 cellularmechanisms
38 characteristics
39 clinical applications
40 complex traits
41 concept
42 culture engineering
43 current state
44 decades
45 determinants
46 different facets
47 dream cellswith superlative characteristics
48 efficiency
49 efforts
50 engineering
51 engineering cells
52 engineering efforts
53 facets
54 favorable growth
55 fundamental physiological basis
56 fundamentals
57 growth
58 growth andapoptosis
59 homeostasisas
60 implications
61 increase
62 key determinant
63 large-scale bioprocessing
64 metabolism
65 number
66 past decade
67 pathway
68 perspective
69 physiological basis
70 physiological homeostasisas
71 process
72 process efficiency
73 processing
74 production characteristics
75 productivity
76 protein
77 protein processing
78 public
79 robust process
80 state
81 success
82 superlative characteristics
83 thephysiological perspective
84 therapeutic proteins
85 traits
86 tremendous increase
87 schema:name Engineering Cells for Cell Culture Bioprocessing – Physiological Fundamentals
88 schema:pagination 119-164
89 schema:productId N46cc23a0181f44cb8a5b50aa45d7de5d
90 Na5247f30d83541e19a1bbfe647f25a35
91 Nd6558d7956ed495cb5c40a60062540c5
92 schema:publisher N373040632b294f1392cdf65823e106f9
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047147972
94 https://doi.org/10.1007/10_017
95 schema:sdDatePublished 2022-01-01T19:23
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N15c0437d8b5e43729eed02e0b8b518de
98 schema:url https://doi.org/10.1007/10_017
99 sgo:license sg:explorer/license/
100 sgo:sdDataset chapters
101 rdf:type schema:Chapter
102 N063bde7b907e49279e6a9daf31504927 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Bioreactors
104 rdf:type schema:DefinedTerm
105 N15c0437d8b5e43729eed02e0b8b518de schema:name Springer Nature - SN SciGraph project
106 rdf:type schema:Organization
107 N1a19f0dbbb7347199a1f65eefc65372d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Biotechnology
109 rdf:type schema:DefinedTerm
110 N373040632b294f1392cdf65823e106f9 schema:name Springer Nature
111 rdf:type schema:Organisation
112 N46cc23a0181f44cb8a5b50aa45d7de5d schema:name doi
113 schema:value 10.1007/10_017
114 rdf:type schema:PropertyValue
115 N4b433ce2f3b44348833071a87ae43875 rdf:first sg:person.01000665101.12
116 rdf:rest Na66441cf73b44398b66a55796662af5d
117 N62a2c5b207814396b0f25cca7131d564 schema:familyName Hu
118 schema:givenName Wei-Shou
119 rdf:type schema:Person
120 N6493582ed91248ab8ff16e57a87972df rdf:first sg:person.01342234704.75
121 rdf:rest N4b433ce2f3b44348833071a87ae43875
122 N6b5e424d013c4564b41db44e656dc202 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
123 schema:name Cell Culture Techniques
124 rdf:type schema:DefinedTerm
125 N6bf9e9d0c3ee4f65b260ceac92795742 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Cell Cycle
127 rdf:type schema:DefinedTerm
128 N8826878ffa5042d7a0121461f4148a11 rdf:first N62a2c5b207814396b0f25cca7131d564
129 rdf:rest rdf:nil
130 Na0fd4087963844d09b9ee0da82d03db3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Energy Metabolism
132 rdf:type schema:DefinedTerm
133 Na5247f30d83541e19a1bbfe647f25a35 schema:name pubmed_id
134 schema:value 16989260
135 rdf:type schema:PropertyValue
136 Na5b1e3ca57bf406489c32eedb23ff5c5 schema:isbn 978-3-540-34006-5
137 978-3-540-34007-2
138 schema:name Cell Culture Engineering
139 rdf:type schema:Book
140 Na66441cf73b44398b66a55796662af5d rdf:first sg:person.0634313525.93
141 rdf:rest Nde91543d0ce240d3ba1f7c78402d65d1
142 Nb40cf3da75534bb1bf139089d69112db schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Cell Physiological Phenomena
144 rdf:type schema:DefinedTerm
145 Nbbe9105ffcf345ea8d6ca0b5ebcd65f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Recombinant Proteins
147 rdf:type schema:DefinedTerm
148 Ncf26e7a4afa7490fb72845cd565acb46 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
149 schema:name Animals
150 rdf:type schema:DefinedTerm
151 Nd407f095519c4590af24a41b029c8582 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
152 schema:name Apoptosis
153 rdf:type schema:DefinedTerm
154 Nd6558d7956ed495cb5c40a60062540c5 schema:name dimensions_id
155 schema:value pub.1047147972
156 rdf:type schema:PropertyValue
157 Nde91543d0ce240d3ba1f7c78402d65d1 rdf:first sg:person.01064261433.49
158 rdf:rest rdf:nil
159 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
160 schema:name Biological Sciences
161 rdf:type schema:DefinedTerm
162 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
163 schema:name Biochemistry and Cell Biology
164 rdf:type schema:DefinedTerm
165 sg:person.01000665101.12 schema:affiliation grid-institutes:grid.17635.36
166 schema:familyName Hossler
167 schema:givenName Patrick
168 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01000665101.12
169 rdf:type schema:Person
170 sg:person.01064261433.49 schema:affiliation grid-institutes:grid.17635.36
171 schema:familyName Hu
172 schema:givenName Wei-Shou
173 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49
174 rdf:type schema:Person
175 sg:person.01342234704.75 schema:affiliation grid-institutes:grid.17635.36
176 schema:familyName Seth
177 schema:givenName Gargi
178 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01342234704.75
179 rdf:type schema:Person
180 sg:person.0634313525.93 schema:affiliation grid-institutes:grid.17635.36
181 schema:familyName Yee
182 schema:givenName Joon Chong
183 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0634313525.93
184 rdf:type schema:Person
185 grid-institutes:grid.17635.36 schema:alternateName Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA
186 schema:name Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, 55455-0132, Minneapolis, MN, USA
187 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...