Fedbatch Culture and Dynamic Nutrient Feeding View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006-06-10

AUTHORS

Katie F. Wlaschin , Wei-Shou Hu

ABSTRACT

In the past decade, we have seen a rapid expansion in mammalian cell based therapeutic proteinsreaching clinical applications. This increased demand has been met with much increased productivity throughintensive process development. During this time, fedbatch culture processes have emerged as the predominantmode for producing recombinant proteins. In this review, we discuss the fundamentals of fedbatch cultureprocess design, focusing on the use of stoichiometric nutrient requirements for feed medium formulation,and articulating the need and potential means for devising rational dynamic feeding schemes. Incorporationof on-line nutrient measurement will play a key role in further refinement of process control for thedevelopment of a much sought after generic feeding strategy that can respond to the changing demandsof different cell lines in a fluctuating culture environment. The future of process engineering willlikely require a combination of current process engineering strategies along with a better understandingand control over cell physiology. Process development will likely to entail not only optimizing traditionalengineering parameters but also engineering cell lines with desired characteristics. The integration ofcell engineering and process intensification will likely provide the stimuli that propel the limits of growthand productivity to the next high level. More... »

PAGES

43-74

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/10_015

DOI

http://dx.doi.org/10.1007/10_015

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049284634

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16989257


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bioreactors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Culture Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombinant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Technology, Pharmaceutical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wlaschin", 
        "givenName": "Katie F.", 
        "id": "sg:person.0625561307.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625561307.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "id": "sg:person.01064261433.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-06-10", 
    "datePublishedReg": "2006-06-10", 
    "description": "In the past decade, we have seen a\u00a0rapid expansion in mammalian cell based therapeutic proteinsreaching clinical applications. This increased demand has been met with much increased productivity throughintensive process development. During this time, fedbatch culture processes have emerged as the predominantmode for producing recombinant proteins. In this review, we discuss the fundamentals of fedbatch cultureprocess design, focusing on the use of stoichiometric nutrient requirements for feed medium formulation,and articulating the need and potential means for devising rational dynamic feeding schemes. Incorporationof on-line nutrient measurement will play a\u00a0key role in further refinement of process control for thedevelopment of a\u00a0much sought after generic feeding strategy that can respond to the changing demandsof different cell lines in a\u00a0fluctuating culture environment. The future of process engineering willlikely require a\u00a0combination of current process engineering strategies along with a\u00a0better understandingand control over cell physiology. Process development will likely to entail not only optimizing traditionalengineering parameters but also engineering cell lines with desired characteristics. The integration ofcell engineering and process intensification will likely provide the stimuli that propel the limits of growthand productivity to the next high level.", 
    "editor": [
      {
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/10_015", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-34006-5", 
        "978-3-540-34007-2"
      ], 
      "name": "Cell Culture Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "cell lines", 
      "mammalian cells", 
      "dynamic nutrient feeding", 
      "cell physiology", 
      "recombinant proteins", 
      "different cell lines", 
      "process engineering strategies", 
      "engineering strategies", 
      "feeding strategies", 
      "culture environment", 
      "medium formulation", 
      "nutrient requirements", 
      "nutrient feeding", 
      "nutrient measurements", 
      "culture process", 
      "key role", 
      "protein", 
      "rapid expansion", 
      "incorporationof", 
      "potential means", 
      "high levels", 
      "physiology", 
      "lines", 
      "cells", 
      "productivity", 
      "development", 
      "role", 
      "past decade", 
      "feeding", 
      "culture", 
      "engineering", 
      "clinical applications", 
      "control", 
      "strategies", 
      "expansion", 
      "levels", 
      "environment", 
      "intensification", 
      "process development", 
      "feeding scheme", 
      "stimuli", 
      "next higher level", 
      "review", 
      "further refinement", 
      "process", 
      "combination", 
      "decades", 
      "requirements", 
      "thedevelopment", 
      "future", 
      "fedbatch culture", 
      "time", 
      "use", 
      "characteristics", 
      "means", 
      "demand", 
      "applications", 
      "process engineering", 
      "need", 
      "refinement", 
      "parameters", 
      "limit", 
      "design", 
      "measurements", 
      "fundamentals", 
      "formulation", 
      "scheme", 
      "process intensification", 
      "process control", 
      "line nutrient measurements", 
      "productivity throughintensive process development", 
      "throughintensive process development", 
      "predominantmode", 
      "fedbatch cultureprocess design", 
      "cultureprocess design", 
      "stoichiometric nutrient requirements", 
      "feed medium formulation", 
      "rational dynamic feeding schemes", 
      "dynamic feeding schemes", 
      "generic feeding strategy", 
      "demandsof different cell lines", 
      "current process engineering strategies", 
      "integration ofcell engineering", 
      "ofcell engineering", 
      "growthand productivity"
    ], 
    "name": "Fedbatch Culture and Dynamic Nutrient Feeding", 
    "pagination": "43-74", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049284634"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/10_015"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16989257"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/10_015", 
      "https://app.dimensions.ai/details/publication/pub.1049284634"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_212.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/10_015"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/10_015'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/10_015'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/10_015'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/10_015'


 

This table displays all metadata directly associated to this object as RDF triples.

180 TRIPLES      23 PREDICATES      117 URIs      110 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/10_015 schema:about N15e3a3e1c0c5492c88341a22b68ee601
2 N640ef389b8e446939f48ff18964f7c57
3 N82088505784244c6b7a419e5041313b7
4 N90db20dbdb7a4e798c83535de019e309
5 Na03279abd1764625ab15737e16c67786
6 Nc82a26e67c9e4b15b89f9f1dd00909b3
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author N1849eae446d045fe9f4c46c01e492252
10 schema:datePublished 2006-06-10
11 schema:datePublishedReg 2006-06-10
12 schema:description In the past decade, we have seen a rapid expansion in mammalian cell based therapeutic proteinsreaching clinical applications. This increased demand has been met with much increased productivity throughintensive process development. During this time, fedbatch culture processes have emerged as the predominantmode for producing recombinant proteins. In this review, we discuss the fundamentals of fedbatch cultureprocess design, focusing on the use of stoichiometric nutrient requirements for feed medium formulation,and articulating the need and potential means for devising rational dynamic feeding schemes. Incorporationof on-line nutrient measurement will play a key role in further refinement of process control for thedevelopment of a much sought after generic feeding strategy that can respond to the changing demandsof different cell lines in a fluctuating culture environment. The future of process engineering willlikely require a combination of current process engineering strategies along with a better understandingand control over cell physiology. Process development will likely to entail not only optimizing traditionalengineering parameters but also engineering cell lines with desired characteristics. The integration ofcell engineering and process intensification will likely provide the stimuli that propel the limits of growthand productivity to the next high level.
13 schema:editor N7be845f1763044d9a2889d2b4c8a94d3
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N5d4b733e23724d2aa4799b3a7ffec666
18 schema:keywords applications
19 cell lines
20 cell physiology
21 cells
22 characteristics
23 clinical applications
24 combination
25 control
26 culture
27 culture environment
28 culture process
29 cultureprocess design
30 current process engineering strategies
31 decades
32 demand
33 demandsof different cell lines
34 design
35 development
36 different cell lines
37 dynamic feeding schemes
38 dynamic nutrient feeding
39 engineering
40 engineering strategies
41 environment
42 expansion
43 fedbatch culture
44 fedbatch cultureprocess design
45 feed medium formulation
46 feeding
47 feeding scheme
48 feeding strategies
49 formulation
50 fundamentals
51 further refinement
52 future
53 generic feeding strategy
54 growthand productivity
55 high levels
56 incorporationof
57 integration ofcell engineering
58 intensification
59 key role
60 levels
61 limit
62 line nutrient measurements
63 lines
64 mammalian cells
65 means
66 measurements
67 medium formulation
68 need
69 next higher level
70 nutrient feeding
71 nutrient measurements
72 nutrient requirements
73 ofcell engineering
74 parameters
75 past decade
76 physiology
77 potential means
78 predominantmode
79 process
80 process control
81 process development
82 process engineering
83 process engineering strategies
84 process intensification
85 productivity
86 productivity throughintensive process development
87 protein
88 rapid expansion
89 rational dynamic feeding schemes
90 recombinant proteins
91 refinement
92 requirements
93 review
94 role
95 scheme
96 stimuli
97 stoichiometric nutrient requirements
98 strategies
99 thedevelopment
100 throughintensive process development
101 time
102 use
103 schema:name Fedbatch Culture and Dynamic Nutrient Feeding
104 schema:pagination 43-74
105 schema:productId N59e5855f261d4329bdb285ccbcdb8e7c
106 N9ef0ef9b253247e5a6c4402d984034ee
107 Nc41f10c364794b08a8fd4d7cd372c64c
108 schema:publisher N36715f1b78884f6096b3a714c07e26e7
109 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049284634
110 https://doi.org/10.1007/10_015
111 schema:sdDatePublished 2022-01-01T19:12
112 schema:sdLicense https://scigraph.springernature.com/explorer/license/
113 schema:sdPublisher N506a407390e14f1ca9cfb38c9be5e8d6
114 schema:url https://doi.org/10.1007/10_015
115 sgo:license sg:explorer/license/
116 sgo:sdDataset chapters
117 rdf:type schema:Chapter
118 N15e3a3e1c0c5492c88341a22b68ee601 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
119 schema:name Recombinant Proteins
120 rdf:type schema:DefinedTerm
121 N1849eae446d045fe9f4c46c01e492252 rdf:first sg:person.0625561307.04
122 rdf:rest N9424d022e2174f979a22012187005d26
123 N36715f1b78884f6096b3a714c07e26e7 schema:name Springer Nature
124 rdf:type schema:Organisation
125 N4cb5b2e92f9b43d0bdab205e1c84c4f6 schema:familyName Hu
126 schema:givenName Wei-Shou
127 rdf:type schema:Person
128 N506a407390e14f1ca9cfb38c9be5e8d6 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 N59e5855f261d4329bdb285ccbcdb8e7c schema:name dimensions_id
131 schema:value pub.1049284634
132 rdf:type schema:PropertyValue
133 N5d4b733e23724d2aa4799b3a7ffec666 schema:isbn 978-3-540-34006-5
134 978-3-540-34007-2
135 schema:name Cell Culture Engineering
136 rdf:type schema:Book
137 N640ef389b8e446939f48ff18964f7c57 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
138 schema:name Technology, Pharmaceutical
139 rdf:type schema:DefinedTerm
140 N7be845f1763044d9a2889d2b4c8a94d3 rdf:first N4cb5b2e92f9b43d0bdab205e1c84c4f6
141 rdf:rest rdf:nil
142 N82088505784244c6b7a419e5041313b7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
143 schema:name Cell Culture Techniques
144 rdf:type schema:DefinedTerm
145 N90db20dbdb7a4e798c83535de019e309 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
146 schema:name Bioreactors
147 rdf:type schema:DefinedTerm
148 N9424d022e2174f979a22012187005d26 rdf:first sg:person.01064261433.49
149 rdf:rest rdf:nil
150 N9ef0ef9b253247e5a6c4402d984034ee schema:name pubmed_id
151 schema:value 16989257
152 rdf:type schema:PropertyValue
153 Na03279abd1764625ab15737e16c67786 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
154 schema:name Animals
155 rdf:type schema:DefinedTerm
156 Nc41f10c364794b08a8fd4d7cd372c64c schema:name doi
157 schema:value 10.1007/10_015
158 rdf:type schema:PropertyValue
159 Nc82a26e67c9e4b15b89f9f1dd00909b3 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
160 schema:name Biotechnology
161 rdf:type schema:DefinedTerm
162 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
163 schema:name Biological Sciences
164 rdf:type schema:DefinedTerm
165 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
166 schema:name Biochemistry and Cell Biology
167 rdf:type schema:DefinedTerm
168 sg:person.01064261433.49 schema:affiliation grid-institutes:grid.17635.36
169 schema:familyName Hu
170 schema:givenName Wei-Shou
171 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49
172 rdf:type schema:Person
173 sg:person.0625561307.04 schema:affiliation grid-institutes:grid.17635.36
174 schema:familyName Wlaschin
175 schema:givenName Katie F.
176 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625561307.04
177 rdf:type schema:Person
178 grid-institutes:grid.17635.36 schema:alternateName Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA
179 schema:name Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA
180 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...