2006-06-10
AUTHORSKatie F. Wlaschin , Wei-Shou Hu
ABSTRACTIn the past decade, we have seen a rapid expansion in mammalian cell based therapeutic proteinsreaching clinical applications. This increased demand has been met with much increased productivity throughintensive process development. During this time, fedbatch culture processes have emerged as the predominantmode for producing recombinant proteins. In this review, we discuss the fundamentals of fedbatch cultureprocess design, focusing on the use of stoichiometric nutrient requirements for feed medium formulation,and articulating the need and potential means for devising rational dynamic feeding schemes. Incorporationof on-line nutrient measurement will play a key role in further refinement of process control for thedevelopment of a much sought after generic feeding strategy that can respond to the changing demandsof different cell lines in a fluctuating culture environment. The future of process engineering willlikely require a combination of current process engineering strategies along with a better understandingand control over cell physiology. Process development will likely to entail not only optimizing traditionalengineering parameters but also engineering cell lines with desired characteristics. The integration ofcell engineering and process intensification will likely provide the stimuli that propel the limits of growthand productivity to the next high level. More... »
PAGES43-74
Cell Culture Engineering
ISBN
978-3-540-34006-5
978-3-540-34007-2
http://scigraph.springernature.com/pub.10.1007/10_015
DOIhttp://dx.doi.org/10.1007/10_015
DIMENSIONShttps://app.dimensions.ai/details/publication/pub.1049284634
PUBMEDhttps://www.ncbi.nlm.nih.gov/pubmed/16989257
JSON-LD is the canonical representation for SciGraph data.
TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT
[
{
"@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json",
"about": [
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biological Sciences",
"type": "DefinedTerm"
},
{
"id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601",
"inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/",
"name": "Biochemistry and Cell Biology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Animals",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Bioreactors",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Biotechnology",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Cell Culture Techniques",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Recombinant Proteins",
"type": "DefinedTerm"
},
{
"inDefinedTermSet": "https://www.nlm.nih.gov/mesh/",
"name": "Technology, Pharmaceutical",
"type": "DefinedTerm"
}
],
"author": [
{
"affiliation": {
"alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA",
"id": "http://www.grid.ac/institutes/grid.17635.36",
"name": [
"Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA"
],
"type": "Organization"
},
"familyName": "Wlaschin",
"givenName": "Katie F.",
"id": "sg:person.0625561307.04",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625561307.04"
],
"type": "Person"
},
{
"affiliation": {
"alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA",
"id": "http://www.grid.ac/institutes/grid.17635.36",
"name": [
"Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA"
],
"type": "Organization"
},
"familyName": "Hu",
"givenName": "Wei-Shou",
"id": "sg:person.01064261433.49",
"sameAs": [
"https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49"
],
"type": "Person"
}
],
"datePublished": "2006-06-10",
"datePublishedReg": "2006-06-10",
"description": "In the past decade, we have seen a\u00a0rapid expansion in mammalian cell based therapeutic proteinsreaching clinical applications. This increased demand has been met with much increased productivity throughintensive process development. During this time, fedbatch culture processes have emerged as the predominantmode for producing recombinant proteins. In this review, we discuss the fundamentals of fedbatch cultureprocess design, focusing on the use of stoichiometric nutrient requirements for feed medium formulation,and articulating the need and potential means for devising rational dynamic feeding schemes. Incorporationof on-line nutrient measurement will play a\u00a0key role in further refinement of process control for thedevelopment of a\u00a0much sought after generic feeding strategy that can respond to the changing demandsof different cell lines in a\u00a0fluctuating culture environment. The future of process engineering willlikely require a\u00a0combination of current process engineering strategies along with a\u00a0better understandingand control over cell physiology. Process development will likely to entail not only optimizing traditionalengineering parameters but also engineering cell lines with desired characteristics. The integration ofcell engineering and process intensification will likely provide the stimuli that propel the limits of growthand productivity to the next high level.",
"editor": [
{
"familyName": "Hu",
"givenName": "Wei-Shou",
"type": "Person"
}
],
"genre": "chapter",
"id": "sg:pub.10.1007/10_015",
"inLanguage": "en",
"isAccessibleForFree": false,
"isPartOf": {
"isbn": [
"978-3-540-34006-5",
"978-3-540-34007-2"
],
"name": "Cell Culture Engineering",
"type": "Book"
},
"keywords": [
"process engineering strategies",
"engineering strategies",
"process development",
"recombinant proteins",
"feeding scheme",
"fedbatch culture",
"culture process",
"different cell lines",
"nutrient feeding",
"medium formulation",
"clinical applications",
"engineering",
"process intensification",
"culture environment",
"process engineering",
"mammalian cells",
"feeding strategies",
"cell physiology",
"rapid expansion",
"applications",
"past decade",
"scheme",
"process control",
"cell lines",
"potential means",
"limit",
"requirements",
"design",
"strategies",
"demand",
"fundamentals",
"development",
"lines",
"next higher level",
"measurements",
"key role",
"environment",
"characteristics",
"cells",
"future",
"formulation",
"process",
"nutrient requirements",
"combination",
"productivity",
"use",
"control",
"parameters",
"time",
"decades",
"protein",
"means",
"high levels",
"need",
"further refinement",
"culture",
"review",
"expansion",
"refinement",
"physiology",
"levels",
"role",
"intensification",
"thedevelopment",
"feeding",
"nutrient measurements",
"stimuli",
"dynamic nutrient feeding",
"incorporationof"
],
"name": "Fedbatch Culture and Dynamic Nutrient Feeding",
"pagination": "43-74",
"productId": [
{
"name": "dimensions_id",
"type": "PropertyValue",
"value": [
"pub.1049284634"
]
},
{
"name": "doi",
"type": "PropertyValue",
"value": [
"10.1007/10_015"
]
},
{
"name": "pubmed_id",
"type": "PropertyValue",
"value": [
"16989257"
]
}
],
"publisher": {
"name": "Springer Nature",
"type": "Organisation"
},
"sameAs": [
"https://doi.org/10.1007/10_015",
"https://app.dimensions.ai/details/publication/pub.1049284634"
],
"sdDataset": "chapters",
"sdDatePublished": "2022-05-20T07:41",
"sdLicense": "https://scigraph.springernature.com/explorer/license/",
"sdPublisher": {
"name": "Springer Nature - SN SciGraph project",
"type": "Organization"
},
"sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_124.jsonl",
"type": "Chapter",
"url": "https://doi.org/10.1007/10_015"
}
]
Download the RDF metadata as: json-ld nt turtle xml License info
JSON-LD is a popular format for linked data which is fully compatible with JSON.
curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/10_015'
N-Triples is a line-based linked data format ideal for batch operations.
curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/10_015'
Turtle is a human-readable linked data format.
curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/10_015'
RDF/XML is a standard XML format for linked data.
curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/10_015'
This table displays all metadata directly associated to this object as RDF triples.
164 TRIPLES
23 PREDICATES
101 URIs
94 LITERALS
14 BLANK NODES
Subject | Predicate | Object | |
---|---|---|---|
1 | sg:pub.10.1007/10_015 | schema:about | N1374e0f16cdb4d0aa655be0784b91b9d |
2 | ″ | ″ | N25bf9e0292d04189a8408164769ac270 |
3 | ″ | ″ | N36ebb7e5b7a54b8c9415e2d06152dfdd |
4 | ″ | ″ | N52f64911f3d54e858d5c83eacbc8ee96 |
5 | ″ | ″ | N9de02f26eb064461a3ca0d16310bbdc6 |
6 | ″ | ″ | Nd26136f58cdf40d9816e7d3176669a72 |
7 | ″ | ″ | anzsrc-for:06 |
8 | ″ | ″ | anzsrc-for:0601 |
9 | ″ | schema:author | Nce339a89540c49d8bd0d938589dbf06f |
10 | ″ | schema:datePublished | 2006-06-10 |
11 | ″ | schema:datePublishedReg | 2006-06-10 |
12 | ″ | schema:description | In the past decade, we have seen a rapid expansion in mammalian cell based therapeutic proteinsreaching clinical applications. This increased demand has been met with much increased productivity throughintensive process development. During this time, fedbatch culture processes have emerged as the predominantmode for producing recombinant proteins. In this review, we discuss the fundamentals of fedbatch cultureprocess design, focusing on the use of stoichiometric nutrient requirements for feed medium formulation,and articulating the need and potential means for devising rational dynamic feeding schemes. Incorporationof on-line nutrient measurement will play a key role in further refinement of process control for thedevelopment of a much sought after generic feeding strategy that can respond to the changing demandsof different cell lines in a fluctuating culture environment. The future of process engineering willlikely require a combination of current process engineering strategies along with a better understandingand control over cell physiology. Process development will likely to entail not only optimizing traditionalengineering parameters but also engineering cell lines with desired characteristics. The integration ofcell engineering and process intensification will likely provide the stimuli that propel the limits of growthand productivity to the next high level. |
13 | ″ | schema:editor | N36297b2299a5402797cf75e148959d40 |
14 | ″ | schema:genre | chapter |
15 | ″ | schema:inLanguage | en |
16 | ″ | schema:isAccessibleForFree | false |
17 | ″ | schema:isPartOf | Nb52c70109b4746e9aa470987d4266ca1 |
18 | ″ | schema:keywords | applications |
19 | ″ | ″ | cell lines |
20 | ″ | ″ | cell physiology |
21 | ″ | ″ | cells |
22 | ″ | ″ | characteristics |
23 | ″ | ″ | clinical applications |
24 | ″ | ″ | combination |
25 | ″ | ″ | control |
26 | ″ | ″ | culture |
27 | ″ | ″ | culture environment |
28 | ″ | ″ | culture process |
29 | ″ | ″ | decades |
30 | ″ | ″ | demand |
31 | ″ | ″ | design |
32 | ″ | ″ | development |
33 | ″ | ″ | different cell lines |
34 | ″ | ″ | dynamic nutrient feeding |
35 | ″ | ″ | engineering |
36 | ″ | ″ | engineering strategies |
37 | ″ | ″ | environment |
38 | ″ | ″ | expansion |
39 | ″ | ″ | fedbatch culture |
40 | ″ | ″ | feeding |
41 | ″ | ″ | feeding scheme |
42 | ″ | ″ | feeding strategies |
43 | ″ | ″ | formulation |
44 | ″ | ″ | fundamentals |
45 | ″ | ″ | further refinement |
46 | ″ | ″ | future |
47 | ″ | ″ | high levels |
48 | ″ | ″ | incorporationof |
49 | ″ | ″ | intensification |
50 | ″ | ″ | key role |
51 | ″ | ″ | levels |
52 | ″ | ″ | limit |
53 | ″ | ″ | lines |
54 | ″ | ″ | mammalian cells |
55 | ″ | ″ | means |
56 | ″ | ″ | measurements |
57 | ″ | ″ | medium formulation |
58 | ″ | ″ | need |
59 | ″ | ″ | next higher level |
60 | ″ | ″ | nutrient feeding |
61 | ″ | ″ | nutrient measurements |
62 | ″ | ″ | nutrient requirements |
63 | ″ | ″ | parameters |
64 | ″ | ″ | past decade |
65 | ″ | ″ | physiology |
66 | ″ | ″ | potential means |
67 | ″ | ″ | process |
68 | ″ | ″ | process control |
69 | ″ | ″ | process development |
70 | ″ | ″ | process engineering |
71 | ″ | ″ | process engineering strategies |
72 | ″ | ″ | process intensification |
73 | ″ | ″ | productivity |
74 | ″ | ″ | protein |
75 | ″ | ″ | rapid expansion |
76 | ″ | ″ | recombinant proteins |
77 | ″ | ″ | refinement |
78 | ″ | ″ | requirements |
79 | ″ | ″ | review |
80 | ″ | ″ | role |
81 | ″ | ″ | scheme |
82 | ″ | ″ | stimuli |
83 | ″ | ″ | strategies |
84 | ″ | ″ | thedevelopment |
85 | ″ | ″ | time |
86 | ″ | ″ | use |
87 | ″ | schema:name | Fedbatch Culture and Dynamic Nutrient Feeding |
88 | ″ | schema:pagination | 43-74 |
89 | ″ | schema:productId | N87eab2bd59c14a3ba721aade1d5cec8c |
90 | ″ | ″ | Nbb8cb06c72374ad6903c1189b88dea3d |
91 | ″ | ″ | Nbfe07e605339462aaf12563b5694ce86 |
92 | ″ | schema:publisher | Na740d0fe8f584a1c88347e60f968cdc0 |
93 | ″ | schema:sameAs | https://app.dimensions.ai/details/publication/pub.1049284634 |
94 | ″ | ″ | https://doi.org/10.1007/10_015 |
95 | ″ | schema:sdDatePublished | 2022-05-20T07:41 |
96 | ″ | schema:sdLicense | https://scigraph.springernature.com/explorer/license/ |
97 | ″ | schema:sdPublisher | N319e470e2e314fbe9811932fe6eaacde |
98 | ″ | schema:url | https://doi.org/10.1007/10_015 |
99 | ″ | sgo:license | sg:explorer/license/ |
100 | ″ | sgo:sdDataset | chapters |
101 | ″ | rdf:type | schema:Chapter |
102 | N1374e0f16cdb4d0aa655be0784b91b9d | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
103 | ″ | schema:name | Bioreactors |
104 | ″ | rdf:type | schema:DefinedTerm |
105 | N25bf9e0292d04189a8408164769ac270 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
106 | ″ | schema:name | Technology, Pharmaceutical |
107 | ″ | rdf:type | schema:DefinedTerm |
108 | N319e470e2e314fbe9811932fe6eaacde | schema:name | Springer Nature - SN SciGraph project |
109 | ″ | rdf:type | schema:Organization |
110 | N36297b2299a5402797cf75e148959d40 | rdf:first | Nd940ab33632a446197994a008ced3cf5 |
111 | ″ | rdf:rest | rdf:nil |
112 | N36ebb7e5b7a54b8c9415e2d06152dfdd | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
113 | ″ | schema:name | Animals |
114 | ″ | rdf:type | schema:DefinedTerm |
115 | N51451f37ad2044bbb6c14cb446f2279c | rdf:first | sg:person.01064261433.49 |
116 | ″ | rdf:rest | rdf:nil |
117 | N52f64911f3d54e858d5c83eacbc8ee96 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
118 | ″ | schema:name | Biotechnology |
119 | ″ | rdf:type | schema:DefinedTerm |
120 | N87eab2bd59c14a3ba721aade1d5cec8c | schema:name | pubmed_id |
121 | ″ | schema:value | 16989257 |
122 | ″ | rdf:type | schema:PropertyValue |
123 | N9de02f26eb064461a3ca0d16310bbdc6 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
124 | ″ | schema:name | Recombinant Proteins |
125 | ″ | rdf:type | schema:DefinedTerm |
126 | Na740d0fe8f584a1c88347e60f968cdc0 | schema:name | Springer Nature |
127 | ″ | rdf:type | schema:Organisation |
128 | Nb52c70109b4746e9aa470987d4266ca1 | schema:isbn | 978-3-540-34006-5 |
129 | ″ | ″ | 978-3-540-34007-2 |
130 | ″ | schema:name | Cell Culture Engineering |
131 | ″ | rdf:type | schema:Book |
132 | Nbb8cb06c72374ad6903c1189b88dea3d | schema:name | doi |
133 | ″ | schema:value | 10.1007/10_015 |
134 | ″ | rdf:type | schema:PropertyValue |
135 | Nbfe07e605339462aaf12563b5694ce86 | schema:name | dimensions_id |
136 | ″ | schema:value | pub.1049284634 |
137 | ″ | rdf:type | schema:PropertyValue |
138 | Nce339a89540c49d8bd0d938589dbf06f | rdf:first | sg:person.0625561307.04 |
139 | ″ | rdf:rest | N51451f37ad2044bbb6c14cb446f2279c |
140 | Nd26136f58cdf40d9816e7d3176669a72 | schema:inDefinedTermSet | https://www.nlm.nih.gov/mesh/ |
141 | ″ | schema:name | Cell Culture Techniques |
142 | ″ | rdf:type | schema:DefinedTerm |
143 | Nd940ab33632a446197994a008ced3cf5 | schema:familyName | Hu |
144 | ″ | schema:givenName | Wei-Shou |
145 | ″ | rdf:type | schema:Person |
146 | anzsrc-for:06 | schema:inDefinedTermSet | anzsrc-for: |
147 | ″ | schema:name | Biological Sciences |
148 | ″ | rdf:type | schema:DefinedTerm |
149 | anzsrc-for:0601 | schema:inDefinedTermSet | anzsrc-for: |
150 | ″ | schema:name | Biochemistry and Cell Biology |
151 | ″ | rdf:type | schema:DefinedTerm |
152 | sg:person.01064261433.49 | schema:affiliation | grid-institutes:grid.17635.36 |
153 | ″ | schema:familyName | Hu |
154 | ″ | schema:givenName | Wei-Shou |
155 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49 |
156 | ″ | rdf:type | schema:Person |
157 | sg:person.0625561307.04 | schema:affiliation | grid-institutes:grid.17635.36 |
158 | ″ | schema:familyName | Wlaschin |
159 | ″ | schema:givenName | Katie F. |
160 | ″ | schema:sameAs | https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625561307.04 |
161 | ″ | rdf:type | schema:Person |
162 | grid-institutes:grid.17635.36 | schema:alternateName | Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA |
163 | ″ | schema:name | Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA |
164 | ″ | rdf:type | schema:Organization |