Fedbatch Culture and Dynamic Nutrient Feeding View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006-06-10

AUTHORS

Katie F. Wlaschin , Wei-Shou Hu

ABSTRACT

In the past decade, we have seen a rapid expansion in mammalian cell based therapeutic proteinsreaching clinical applications. This increased demand has been met with much increased productivity throughintensive process development. During this time, fedbatch culture processes have emerged as the predominantmode for producing recombinant proteins. In this review, we discuss the fundamentals of fedbatch cultureprocess design, focusing on the use of stoichiometric nutrient requirements for feed medium formulation,and articulating the need and potential means for devising rational dynamic feeding schemes. Incorporationof on-line nutrient measurement will play a key role in further refinement of process control for thedevelopment of a much sought after generic feeding strategy that can respond to the changing demandsof different cell lines in a fluctuating culture environment. The future of process engineering willlikely require a combination of current process engineering strategies along with a better understandingand control over cell physiology. Process development will likely to entail not only optimizing traditionalengineering parameters but also engineering cell lines with desired characteristics. The integration ofcell engineering and process intensification will likely provide the stimuli that propel the limits of growthand productivity to the next high level. More... »

PAGES

43-74

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/10_015

DOI

http://dx.doi.org/10.1007/10_015

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1049284634

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/16989257


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Animals", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Bioreactors", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Biotechnology", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cell Culture Techniques", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Recombinant Proteins", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Technology, Pharmaceutical", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wlaschin", 
        "givenName": "Katie F.", 
        "id": "sg:person.0625561307.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625561307.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "id": "sg:person.01064261433.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2006-06-10", 
    "datePublishedReg": "2006-06-10", 
    "description": "In the past decade, we have seen a\u00a0rapid expansion in mammalian cell based therapeutic proteinsreaching clinical applications. This increased demand has been met with much increased productivity throughintensive process development. During this time, fedbatch culture processes have emerged as the predominantmode for producing recombinant proteins. In this review, we discuss the fundamentals of fedbatch cultureprocess design, focusing on the use of stoichiometric nutrient requirements for feed medium formulation,and articulating the need and potential means for devising rational dynamic feeding schemes. Incorporationof on-line nutrient measurement will play a\u00a0key role in further refinement of process control for thedevelopment of a\u00a0much sought after generic feeding strategy that can respond to the changing demandsof different cell lines in a\u00a0fluctuating culture environment. The future of process engineering willlikely require a\u00a0combination of current process engineering strategies along with a\u00a0better understandingand control over cell physiology. Process development will likely to entail not only optimizing traditionalengineering parameters but also engineering cell lines with desired characteristics. The integration ofcell engineering and process intensification will likely provide the stimuli that propel the limits of growthand productivity to the next high level.", 
    "editor": [
      {
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/10_015", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-3-540-34006-5", 
        "978-3-540-34007-2"
      ], 
      "name": "Cell Culture Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "process engineering strategies", 
      "engineering strategies", 
      "process development", 
      "recombinant proteins", 
      "feeding scheme", 
      "fedbatch culture", 
      "culture process", 
      "different cell lines", 
      "nutrient feeding", 
      "medium formulation", 
      "clinical applications", 
      "engineering", 
      "process intensification", 
      "culture environment", 
      "process engineering", 
      "mammalian cells", 
      "feeding strategies", 
      "cell physiology", 
      "rapid expansion", 
      "applications", 
      "past decade", 
      "scheme", 
      "process control", 
      "cell lines", 
      "potential means", 
      "limit", 
      "requirements", 
      "design", 
      "strategies", 
      "demand", 
      "fundamentals", 
      "development", 
      "lines", 
      "next higher level", 
      "measurements", 
      "key role", 
      "environment", 
      "characteristics", 
      "cells", 
      "future", 
      "formulation", 
      "process", 
      "nutrient requirements", 
      "combination", 
      "productivity", 
      "use", 
      "control", 
      "parameters", 
      "time", 
      "decades", 
      "protein", 
      "means", 
      "high levels", 
      "need", 
      "further refinement", 
      "culture", 
      "review", 
      "expansion", 
      "refinement", 
      "physiology", 
      "levels", 
      "role", 
      "intensification", 
      "thedevelopment", 
      "feeding", 
      "nutrient measurements", 
      "stimuli", 
      "dynamic nutrient feeding", 
      "incorporationof"
    ], 
    "name": "Fedbatch Culture and Dynamic Nutrient Feeding", 
    "pagination": "43-74", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1049284634"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/10_015"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "16989257"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/10_015", 
      "https://app.dimensions.ai/details/publication/pub.1049284634"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:41", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_124.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/10_015"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/10_015'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/10_015'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/10_015'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/10_015'


 

This table displays all metadata directly associated to this object as RDF triples.

164 TRIPLES      23 PREDICATES      101 URIs      94 LITERALS      14 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/10_015 schema:about N1374e0f16cdb4d0aa655be0784b91b9d
2 N25bf9e0292d04189a8408164769ac270
3 N36ebb7e5b7a54b8c9415e2d06152dfdd
4 N52f64911f3d54e858d5c83eacbc8ee96
5 N9de02f26eb064461a3ca0d16310bbdc6
6 Nd26136f58cdf40d9816e7d3176669a72
7 anzsrc-for:06
8 anzsrc-for:0601
9 schema:author Nce339a89540c49d8bd0d938589dbf06f
10 schema:datePublished 2006-06-10
11 schema:datePublishedReg 2006-06-10
12 schema:description In the past decade, we have seen a rapid expansion in mammalian cell based therapeutic proteinsreaching clinical applications. This increased demand has been met with much increased productivity throughintensive process development. During this time, fedbatch culture processes have emerged as the predominantmode for producing recombinant proteins. In this review, we discuss the fundamentals of fedbatch cultureprocess design, focusing on the use of stoichiometric nutrient requirements for feed medium formulation,and articulating the need and potential means for devising rational dynamic feeding schemes. Incorporationof on-line nutrient measurement will play a key role in further refinement of process control for thedevelopment of a much sought after generic feeding strategy that can respond to the changing demandsof different cell lines in a fluctuating culture environment. The future of process engineering willlikely require a combination of current process engineering strategies along with a better understandingand control over cell physiology. Process development will likely to entail not only optimizing traditionalengineering parameters but also engineering cell lines with desired characteristics. The integration ofcell engineering and process intensification will likely provide the stimuli that propel the limits of growthand productivity to the next high level.
13 schema:editor N36297b2299a5402797cf75e148959d40
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf Nb52c70109b4746e9aa470987d4266ca1
18 schema:keywords applications
19 cell lines
20 cell physiology
21 cells
22 characteristics
23 clinical applications
24 combination
25 control
26 culture
27 culture environment
28 culture process
29 decades
30 demand
31 design
32 development
33 different cell lines
34 dynamic nutrient feeding
35 engineering
36 engineering strategies
37 environment
38 expansion
39 fedbatch culture
40 feeding
41 feeding scheme
42 feeding strategies
43 formulation
44 fundamentals
45 further refinement
46 future
47 high levels
48 incorporationof
49 intensification
50 key role
51 levels
52 limit
53 lines
54 mammalian cells
55 means
56 measurements
57 medium formulation
58 need
59 next higher level
60 nutrient feeding
61 nutrient measurements
62 nutrient requirements
63 parameters
64 past decade
65 physiology
66 potential means
67 process
68 process control
69 process development
70 process engineering
71 process engineering strategies
72 process intensification
73 productivity
74 protein
75 rapid expansion
76 recombinant proteins
77 refinement
78 requirements
79 review
80 role
81 scheme
82 stimuli
83 strategies
84 thedevelopment
85 time
86 use
87 schema:name Fedbatch Culture and Dynamic Nutrient Feeding
88 schema:pagination 43-74
89 schema:productId N87eab2bd59c14a3ba721aade1d5cec8c
90 Nbb8cb06c72374ad6903c1189b88dea3d
91 Nbfe07e605339462aaf12563b5694ce86
92 schema:publisher Na740d0fe8f584a1c88347e60f968cdc0
93 schema:sameAs https://app.dimensions.ai/details/publication/pub.1049284634
94 https://doi.org/10.1007/10_015
95 schema:sdDatePublished 2022-05-20T07:41
96 schema:sdLicense https://scigraph.springernature.com/explorer/license/
97 schema:sdPublisher N319e470e2e314fbe9811932fe6eaacde
98 schema:url https://doi.org/10.1007/10_015
99 sgo:license sg:explorer/license/
100 sgo:sdDataset chapters
101 rdf:type schema:Chapter
102 N1374e0f16cdb4d0aa655be0784b91b9d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
103 schema:name Bioreactors
104 rdf:type schema:DefinedTerm
105 N25bf9e0292d04189a8408164769ac270 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
106 schema:name Technology, Pharmaceutical
107 rdf:type schema:DefinedTerm
108 N319e470e2e314fbe9811932fe6eaacde schema:name Springer Nature - SN SciGraph project
109 rdf:type schema:Organization
110 N36297b2299a5402797cf75e148959d40 rdf:first Nd940ab33632a446197994a008ced3cf5
111 rdf:rest rdf:nil
112 N36ebb7e5b7a54b8c9415e2d06152dfdd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Animals
114 rdf:type schema:DefinedTerm
115 N51451f37ad2044bbb6c14cb446f2279c rdf:first sg:person.01064261433.49
116 rdf:rest rdf:nil
117 N52f64911f3d54e858d5c83eacbc8ee96 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
118 schema:name Biotechnology
119 rdf:type schema:DefinedTerm
120 N87eab2bd59c14a3ba721aade1d5cec8c schema:name pubmed_id
121 schema:value 16989257
122 rdf:type schema:PropertyValue
123 N9de02f26eb064461a3ca0d16310bbdc6 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
124 schema:name Recombinant Proteins
125 rdf:type schema:DefinedTerm
126 Na740d0fe8f584a1c88347e60f968cdc0 schema:name Springer Nature
127 rdf:type schema:Organisation
128 Nb52c70109b4746e9aa470987d4266ca1 schema:isbn 978-3-540-34006-5
129 978-3-540-34007-2
130 schema:name Cell Culture Engineering
131 rdf:type schema:Book
132 Nbb8cb06c72374ad6903c1189b88dea3d schema:name doi
133 schema:value 10.1007/10_015
134 rdf:type schema:PropertyValue
135 Nbfe07e605339462aaf12563b5694ce86 schema:name dimensions_id
136 schema:value pub.1049284634
137 rdf:type schema:PropertyValue
138 Nce339a89540c49d8bd0d938589dbf06f rdf:first sg:person.0625561307.04
139 rdf:rest N51451f37ad2044bbb6c14cb446f2279c
140 Nd26136f58cdf40d9816e7d3176669a72 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
141 schema:name Cell Culture Techniques
142 rdf:type schema:DefinedTerm
143 Nd940ab33632a446197994a008ced3cf5 schema:familyName Hu
144 schema:givenName Wei-Shou
145 rdf:type schema:Person
146 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
147 schema:name Biological Sciences
148 rdf:type schema:DefinedTerm
149 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
150 schema:name Biochemistry and Cell Biology
151 rdf:type schema:DefinedTerm
152 sg:person.01064261433.49 schema:affiliation grid-institutes:grid.17635.36
153 schema:familyName Hu
154 schema:givenName Wei-Shou
155 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49
156 rdf:type schema:Person
157 sg:person.0625561307.04 schema:affiliation grid-institutes:grid.17635.36
158 schema:familyName Wlaschin
159 schema:givenName Katie F.
160 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0625561307.04
161 rdf:type schema:Person
162 grid-institutes:grid.17635.36 schema:alternateName Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA
163 schema:name Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Ave. S.E., 55455-0132, Minneapolis, MN, USA
164 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...