Challenges in Reliable Quantum Computing View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Diana Franklin , Frederic T. Chong

ABSTRACT

Quantum computing is a new and promising technology with the potential of exponentially powerful computation - if only a large-scale one can be built. There are several challenges in building a large-scale quantum computer - fabrication, verification, and architecture. The power of quantum computing comes from the ability to store a complex state in a single bit. This also what makes quantum systems difficult to build, verify, and design. Quantum states are fragile, so fabrication must be precise, and bits must often operate at very low temperatures. Unfortunately, the complete state may not be measured precisely, so verification is difficult. Imagine verifying an operation that is expected to not always get the same answer, but only an answer with a particular probability! Finally, errors occur much more often than with classical computing, making error correction the dominant task that quantum architectures need to perform well. We provide a basic tutorial of quantum computation for the system designer and examine the fundamental design and verification issues in constructing scalable quantum computers. We find the primary issues to be the verification of precise fabrication constraints, the design of quantum communication mechanisms, and the design of classical control circuitry for quantum operation. More... »

PAGES

247-266

References to SciGraph publications

Book

TITLE

Nano, Quantum and Molecular Computing

ISBN

1-4020-8067-0

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/1-4020-8068-9_8

DOI

http://dx.doi.org/10.1007/1-4020-8068-9_8

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1043620714


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "California Polytechnic State University", 
          "id": "https://www.grid.ac/institutes/grid.253547.2", 
          "name": [
            "Department of Computer Science, California Polytechnic State University, San Luis Obispo"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Franklin", 
        "givenName": "Diana", 
        "id": "sg:person.07715527733.34", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715527733.34"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of California, Davis", 
          "id": "https://www.grid.ac/institutes/grid.27860.3b", 
          "name": [
            "Department of Computer Science, University of California, Davis"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chong", 
        "givenName": "Frederic T.", 
        "id": "sg:person.010403324463.28", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403324463.28"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/30156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768319", 
          "https://doi.org/10.1038/30156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/30156", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040768319", 
          "https://doi.org/10.1038/30156"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-007x(200011/12)28:6<553::aid-cta127>3.0.co;2-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053178400"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Quantum computing is a new and promising technology with the potential of exponentially powerful computation - if only a large-scale one can be built. There are several challenges in building a large-scale quantum computer - fabrication, verification, and architecture. The power of quantum computing comes from the ability to store a complex state in a single bit. This also what makes quantum systems difficult to build, verify, and design. Quantum states are fragile, so fabrication must be precise, and bits must often operate at very low temperatures. Unfortunately, the complete state may not be measured precisely, so verification is difficult. Imagine verifying an operation that is expected to not always get the same answer, but only an answer with a particular probability! Finally, errors occur much more often than with classical computing, making error correction the dominant task that quantum architectures need to perform well. We provide a basic tutorial of quantum computation for the system designer and examine the fundamental design and verification issues in constructing scalable quantum computers. We find the primary issues to be the verification of precise fabrication constraints, the design of quantum communication mechanisms, and the design of classical control circuitry for quantum operation.", 
    "editor": [
      {
        "familyName": "Shukla", 
        "givenName": "Sandeep K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Bahar", 
        "givenName": "R. Iris", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/1-4020-8068-9_8", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "1-4020-8067-0"
      ], 
      "name": "Nano, Quantum and Molecular Computing", 
      "type": "Book"
    }, 
    "name": "Challenges in Reliable Quantum Computing", 
    "pagination": "247-266", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/1-4020-8068-9_8"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "cfc7c437911dcb5629fe6e4b270a40b33079a48ec1a721bd0f39625f46f41b0d"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1043620714"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston", 
      "name": "Kluwer Academic Publishers", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/1-4020-8068-9_8", 
      "https://app.dimensions.ai/details/publication/pub.1043620714"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000270.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/1-4020-8068-9_8"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/1-4020-8068-9_8'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/1-4020-8068-9_8'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/1-4020-8068-9_8'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/1-4020-8068-9_8'


 

This table displays all metadata directly associated to this object as RDF triples.

86 TRIPLES      23 PREDICATES      29 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/1-4020-8068-9_8 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N5075eecbdfb84a9e890fb04fb8a33bdf
4 schema:citation sg:pub.10.1038/30156
5 https://doi.org/10.1002/1097-007x(200011/12)28:6<553::aid-cta127>3.0.co;2-i
6 schema:datePublished 2004
7 schema:datePublishedReg 2004-01-01
8 schema:description Quantum computing is a new and promising technology with the potential of exponentially powerful computation - if only a large-scale one can be built. There are several challenges in building a large-scale quantum computer - fabrication, verification, and architecture. The power of quantum computing comes from the ability to store a complex state in a single bit. This also what makes quantum systems difficult to build, verify, and design. Quantum states are fragile, so fabrication must be precise, and bits must often operate at very low temperatures. Unfortunately, the complete state may not be measured precisely, so verification is difficult. Imagine verifying an operation that is expected to not always get the same answer, but only an answer with a particular probability! Finally, errors occur much more often than with classical computing, making error correction the dominant task that quantum architectures need to perform well. We provide a basic tutorial of quantum computation for the system designer and examine the fundamental design and verification issues in constructing scalable quantum computers. We find the primary issues to be the verification of precise fabrication constraints, the design of quantum communication mechanisms, and the design of classical control circuitry for quantum operation.
9 schema:editor N5e74fe85ed464b57b8aefe77f2a3bed9
10 schema:genre chapter
11 schema:inLanguage en
12 schema:isAccessibleForFree false
13 schema:isPartOf Ncedda89a78de457e885c2e5005fa96f9
14 schema:name Challenges in Reliable Quantum Computing
15 schema:pagination 247-266
16 schema:productId N3b2c8e31641b43a881567e0927f07666
17 N60037696874744febb1d6008f0b942b4
18 N87c6b4d27c7348d08a0db6fbd8e5b075
19 schema:publisher N66d6f4655ff14e0abb22b1cea427917a
20 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043620714
21 https://doi.org/10.1007/1-4020-8068-9_8
22 schema:sdDatePublished 2019-04-15T13:30
23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
24 schema:sdPublisher N05006babd43040ec9dbcc38248a1f83f
25 schema:url http://link.springer.com/10.1007/1-4020-8068-9_8
26 sgo:license sg:explorer/license/
27 sgo:sdDataset chapters
28 rdf:type schema:Chapter
29 N05006babd43040ec9dbcc38248a1f83f schema:name Springer Nature - SN SciGraph project
30 rdf:type schema:Organization
31 N321d28ca16774b4e91e7c827c813d2c2 rdf:first Ne6a1011ec7da4568a47a31c075ba3a26
32 rdf:rest rdf:nil
33 N3b2c8e31641b43a881567e0927f07666 schema:name dimensions_id
34 schema:value pub.1043620714
35 rdf:type schema:PropertyValue
36 N5075eecbdfb84a9e890fb04fb8a33bdf rdf:first sg:person.07715527733.34
37 rdf:rest Nc9601b72466f426f93d4f2b6dc47ba4e
38 N5e74fe85ed464b57b8aefe77f2a3bed9 rdf:first Nc5861d28ba974693b4f4da49e3c98461
39 rdf:rest N321d28ca16774b4e91e7c827c813d2c2
40 N60037696874744febb1d6008f0b942b4 schema:name doi
41 schema:value 10.1007/1-4020-8068-9_8
42 rdf:type schema:PropertyValue
43 N66d6f4655ff14e0abb22b1cea427917a schema:location Boston
44 schema:name Kluwer Academic Publishers
45 rdf:type schema:Organisation
46 N87c6b4d27c7348d08a0db6fbd8e5b075 schema:name readcube_id
47 schema:value cfc7c437911dcb5629fe6e4b270a40b33079a48ec1a721bd0f39625f46f41b0d
48 rdf:type schema:PropertyValue
49 Nc5861d28ba974693b4f4da49e3c98461 schema:familyName Shukla
50 schema:givenName Sandeep K.
51 rdf:type schema:Person
52 Nc9601b72466f426f93d4f2b6dc47ba4e rdf:first sg:person.010403324463.28
53 rdf:rest rdf:nil
54 Ncedda89a78de457e885c2e5005fa96f9 schema:isbn 1-4020-8067-0
55 schema:name Nano, Quantum and Molecular Computing
56 rdf:type schema:Book
57 Ne6a1011ec7da4568a47a31c075ba3a26 schema:familyName Bahar
58 schema:givenName R. Iris
59 rdf:type schema:Person
60 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
61 schema:name Information and Computing Sciences
62 rdf:type schema:DefinedTerm
63 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
64 schema:name Computation Theory and Mathematics
65 rdf:type schema:DefinedTerm
66 sg:person.010403324463.28 schema:affiliation https://www.grid.ac/institutes/grid.27860.3b
67 schema:familyName Chong
68 schema:givenName Frederic T.
69 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010403324463.28
70 rdf:type schema:Person
71 sg:person.07715527733.34 schema:affiliation https://www.grid.ac/institutes/grid.253547.2
72 schema:familyName Franklin
73 schema:givenName Diana
74 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07715527733.34
75 rdf:type schema:Person
76 sg:pub.10.1038/30156 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040768319
77 https://doi.org/10.1038/30156
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1002/1097-007x(200011/12)28:6<553::aid-cta127>3.0.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1053178400
80 rdf:type schema:CreativeWork
81 https://www.grid.ac/institutes/grid.253547.2 schema:alternateName California Polytechnic State University
82 schema:name Department of Computer Science, California Polytechnic State University, San Luis Obispo
83 rdf:type schema:Organization
84 https://www.grid.ac/institutes/grid.27860.3b schema:alternateName University of California, Davis
85 schema:name Department of Computer Science, University of California, Davis
86 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...