Machine Learning and Statistical Modeling View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

Yixin Chen , Jia Li , James Z. Wang

ABSTRACT

In recent years, machine learning and statistical modeling techniques have attracted extensive attention in image indexing and retrieval. In this chapter, we reviewed five machine learning and statistical modeling techniques to be used in the remaining of the book: a graph-theoretic clustering algorithm, Support Vector Machines, additive fuzzy systems, learning of additive fuzzy systems based on Support Vector Machines, and two-dimensional multi-resolution hidden Markov models. More... »

PAGES

25-46

Book

TITLE

Machine Learning and Statistical Modeling Approaches to Image Retrieval

ISBN

1-4020-8034-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/1-4020-8035-2_3

DOI

http://dx.doi.org/10.1007/1-4020-8035-2_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1014343524


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Chen", 
        "givenName": "Yixin", 
        "type": "Person"
      }, 
      {
        "familyName": "Li", 
        "givenName": "Jia", 
        "type": "Person"
      }, 
      {
        "familyName": "Wang", 
        "givenName": "James Z.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "In recent years, machine learning and statistical modeling techniques have attracted extensive attention in image indexing and retrieval. In this chapter, we reviewed five machine learning and statistical modeling techniques to be used in the remaining of the book: a graph-theoretic clustering algorithm, Support Vector Machines, additive fuzzy systems, learning of additive fuzzy systems based on Support Vector Machines, and two-dimensional multi-resolution hidden Markov models.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/1-4020-8035-2_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "1-4020-8034-4"
      ], 
      "name": "Machine Learning and Statistical Modeling Approaches to Image Retrieval", 
      "type": "Book"
    }, 
    "name": "Machine Learning and Statistical Modeling", 
    "pagination": "25-46", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/1-4020-8035-2_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "4454d14a0d128622c5a9951be64a498f31edceb88a1db981e4bec24979703e7a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1014343524"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston", 
      "name": "Kluwer Academic Publishers", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/1-4020-8035-2_3", 
      "https://app.dimensions.ai/details/publication/pub.1014343524"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T14:10", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000024.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/1-4020-8035-2_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/1-4020-8035-2_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/1-4020-8035-2_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/1-4020-8035-2_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/1-4020-8035-2_3'


 

This table displays all metadata directly associated to this object as RDF triples.

63 TRIPLES      21 PREDICATES      26 URIs      19 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/1-4020-8035-2_3 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nf6469c6b64e9405d9bb2a461bd31280c
4 schema:datePublished 2004
5 schema:datePublishedReg 2004-01-01
6 schema:description In recent years, machine learning and statistical modeling techniques have attracted extensive attention in image indexing and retrieval. In this chapter, we reviewed five machine learning and statistical modeling techniques to be used in the remaining of the book: a graph-theoretic clustering algorithm, Support Vector Machines, additive fuzzy systems, learning of additive fuzzy systems based on Support Vector Machines, and two-dimensional multi-resolution hidden Markov models.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N745e085935e7430ebaea0e356802d18d
11 schema:name Machine Learning and Statistical Modeling
12 schema:pagination 25-46
13 schema:productId N2404f9dcad434869aaff8ec4551f2a2e
14 N2dae69d212d14322a66bf5dcb9b36271
15 Nade5b4aed4b146e38118bffcd16ed294
16 schema:publisher N487e8118a9d84e4abbf20cd414a7c02e
17 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014343524
18 https://doi.org/10.1007/1-4020-8035-2_3
19 schema:sdDatePublished 2019-04-15T14:10
20 schema:sdLicense https://scigraph.springernature.com/explorer/license/
21 schema:sdPublisher N36a4095d14314540821aeb691a12eeb2
22 schema:url http://link.springer.com/10.1007/1-4020-8035-2_3
23 sgo:license sg:explorer/license/
24 sgo:sdDataset chapters
25 rdf:type schema:Chapter
26 N1f70175f170e4a91aa7b8f4b7baf6fbf schema:familyName Wang
27 schema:givenName James Z.
28 rdf:type schema:Person
29 N2404f9dcad434869aaff8ec4551f2a2e schema:name doi
30 schema:value 10.1007/1-4020-8035-2_3
31 rdf:type schema:PropertyValue
32 N2dae69d212d14322a66bf5dcb9b36271 schema:name dimensions_id
33 schema:value pub.1014343524
34 rdf:type schema:PropertyValue
35 N36a4095d14314540821aeb691a12eeb2 schema:name Springer Nature - SN SciGraph project
36 rdf:type schema:Organization
37 N487e8118a9d84e4abbf20cd414a7c02e schema:location Boston
38 schema:name Kluwer Academic Publishers
39 rdf:type schema:Organisation
40 N64ba9e2bc44e483b92666498f5b20c66 rdf:first N1f70175f170e4a91aa7b8f4b7baf6fbf
41 rdf:rest rdf:nil
42 N745e085935e7430ebaea0e356802d18d schema:isbn 1-4020-8034-4
43 schema:name Machine Learning and Statistical Modeling Approaches to Image Retrieval
44 rdf:type schema:Book
45 Na8cc8d714ebc42e2919b975cfc05de22 rdf:first Nffdac7aaa7594f118e00e28955c767ec
46 rdf:rest N64ba9e2bc44e483b92666498f5b20c66
47 Nade5b4aed4b146e38118bffcd16ed294 schema:name readcube_id
48 schema:value 4454d14a0d128622c5a9951be64a498f31edceb88a1db981e4bec24979703e7a
49 rdf:type schema:PropertyValue
50 Nc978002c22b94c0092c1d6a0ef670e05 schema:familyName Chen
51 schema:givenName Yixin
52 rdf:type schema:Person
53 Nf6469c6b64e9405d9bb2a461bd31280c rdf:first Nc978002c22b94c0092c1d6a0ef670e05
54 rdf:rest Na8cc8d714ebc42e2919b975cfc05de22
55 Nffdac7aaa7594f118e00e28955c767ec schema:familyName Li
56 schema:givenName Jia
57 rdf:type schema:Person
58 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
59 schema:name Information and Computing Sciences
60 rdf:type schema:DefinedTerm
61 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
62 schema:name Artificial Intelligence and Image Processing
63 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...