Molecular Analysis by Vibrational Spectroscopy View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005-01-01

AUTHORS

Takumi Noguchi , Catherine Berthomieu

ABSTRACT

Vibrational spectroscopy, which includes infrared and Raman spectroscopies, provides structural information of molecules by detecting molecular vibrations based on chemical bonds and interactions. These methods have been applied to the study of various cofactors in Photosystem II. In particular, light-induced Fourier transform infrared (FTIR) difference spectroscopy has proven to be a powerful method to reveal detailed structures of the binding sites of cofactors including protein moieties and water molecules. Information available by FTIR difference spectroscopy includes hydrogen bonding and protonation state of chemical groups, which play an essential role in proton transfer and also in controlling redox reactions, but are often not available by X-ray crystallography. The FTIR investigations cover all the redox cofactors of Photosystem II in both the main and peripheral electron-transfer pathways, i.e., the manganese-cluster, the redox-active tyrosines Yz and YD, the primary donor P680, the primary acceptor pheophytin, the quinone acceptors QA and QB, the non-heme iron, cytochrome b559, chlorophyll Z, and β-carotene. This article reviews how the structures and reactions of these cofactors have been studied using mainly FTIR spectroscopy with the assistance of Raman spectroscopy. More... »

PAGES

367-387

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/1-4020-4254-x_17

DOI

http://dx.doi.org/10.1007/1-4020-4254-x_17

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1030117698


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Materials Science, University of Tsukuba, 305-8573, Tsukuba, Ibaraki, Japan", 
          "id": "http://www.grid.ac/institutes/grid.20515.33", 
          "name": [
            "Institute of Materials Science, University of Tsukuba, 305-8573, Tsukuba, Ibaraki, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Noguchi", 
        "givenName": "Takumi", 
        "id": "sg:person.01134352213.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134352213.65"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "CEA/Cadarache, DSV DEVM, Laboratoire de Bio\u00e9nerg\u00e9tique Cellulaire, UMR 6191 CNRS-CEA-Aix-Marseille II CEA 1000, B\u00e2t. 156, F-13108, Saint-Paul-lez-Durance, Cedex, France", 
          "id": "http://www.grid.ac/institutes/grid.457335.3", 
          "name": [
            "CEA/Cadarache, DSV DEVM, Laboratoire de Bio\u00e9nerg\u00e9tique Cellulaire, UMR 6191 CNRS-CEA-Aix-Marseille II CEA 1000, B\u00e2t. 156, F-13108, Saint-Paul-lez-Durance, Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Berthomieu", 
        "givenName": "Catherine", 
        "id": "sg:person.0641716334.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641716334.91"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-01-01", 
    "datePublishedReg": "2005-01-01", 
    "description": "Vibrational spectroscopy, which includes infrared and Raman spectroscopies, provides structural information of molecules by detecting molecular vibrations based on chemical bonds and interactions. These methods have been applied to the study of various cofactors in Photosystem II. In particular, light-induced Fourier transform infrared (FTIR) difference spectroscopy has proven to be a powerful method to reveal detailed structures of the binding sites of cofactors including protein moieties and water molecules. Information available by FTIR difference spectroscopy includes hydrogen bonding and protonation state of chemical groups, which play an essential role in proton transfer and also in controlling redox reactions, but are often not available by X-ray crystallography. The FTIR investigations cover all the redox cofactors of Photosystem II in both the main and peripheral electron-transfer pathways, i.e., the manganese-cluster, the redox-active tyrosines Yz and YD, the primary donor P680, the primary acceptor pheophytin, the quinone acceptors QA and QB, the non-heme iron, cytochrome b559, chlorophyll Z, and \u03b2-carotene. This article reviews how the structures and reactions of these cofactors have been studied using mainly FTIR spectroscopy with the assistance of Raman spectroscopy.", 
    "editor": [
      {
        "familyName": "Wydrzynski", 
        "givenName": "Thomas J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Satoh", 
        "givenName": "Kimiyuki", 
        "type": "Person"
      }, 
      {
        "familyName": "Freeman", 
        "givenName": "Joel A.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/1-4020-4254-x_17", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "1-4020-4249-3"
      ], 
      "name": "Photosystem II", 
      "type": "Book"
    }, 
    "keywords": [
      "vibrational spectroscopy", 
      "Raman spectroscopy", 
      "redox-active tyrosine YZ", 
      "light-induced Fourier transform", 
      "difference spectroscopy", 
      "X-ray crystallography", 
      "electron transfer pathway", 
      "quinone acceptor QA", 
      "FTIR difference spectroscopy", 
      "primary donor P680", 
      "photosystem II", 
      "tyrosine YZ", 
      "redox reactions", 
      "hydrogen bonding", 
      "water molecules", 
      "FTIR spectroscopy", 
      "non-heme iron", 
      "chemical bonds", 
      "manganese cluster", 
      "proton transfer", 
      "protonation state", 
      "FTIR investigation", 
      "chlorophyll Z", 
      "chemical groups", 
      "acceptor QA", 
      "Fourier transform", 
      "redox cofactors", 
      "spectroscopy", 
      "molecular vibrations", 
      "cytochrome b559", 
      "primary acceptor pheophytin", 
      "structural information", 
      "molecules", 
      "reaction", 
      "protein moiety", 
      "detailed structure", 
      "cofactor", 
      "powerful method", 
      "crystallography", 
      "moiety", 
      "P680", 
      "bonds", 
      "bonding", 
      "structure", 
      "pheophytin", 
      "b559", 
      "YZ", 
      "\u03b2-carotene", 
      "transform", 
      "QB", 
      "iron", 
      "transfer", 
      "interaction", 
      "method", 
      "QA", 
      "sites", 
      "YD", 
      "investigation", 
      "essential role", 
      "state", 
      "vibration", 
      "group", 
      "pathway", 
      "analysis", 
      "study", 
      "role", 
      "assistance", 
      "information", 
      "molecular analysis", 
      "article"
    ], 
    "name": "Molecular Analysis by Vibrational Spectroscopy", 
    "pagination": "367-387", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1030117698"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/1-4020-4254-x_17"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/1-4020-4254-x_17", 
      "https://app.dimensions.ai/details/publication/pub.1030117698"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_271.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/1-4020-4254-x_17"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/1-4020-4254-x_17'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/1-4020-4254-x_17'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/1-4020-4254-x_17'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/1-4020-4254-x_17'


 

This table displays all metadata directly associated to this object as RDF triples.

160 TRIPLES      22 PREDICATES      97 URIs      87 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/1-4020-4254-x_17 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 anzsrc-for:03
4 anzsrc-for:0302
5 anzsrc-for:0306
6 schema:author Nc7f181f6701c4cebbbd23f853b07c3e9
7 schema:datePublished 2005-01-01
8 schema:datePublishedReg 2005-01-01
9 schema:description Vibrational spectroscopy, which includes infrared and Raman spectroscopies, provides structural information of molecules by detecting molecular vibrations based on chemical bonds and interactions. These methods have been applied to the study of various cofactors in Photosystem II. In particular, light-induced Fourier transform infrared (FTIR) difference spectroscopy has proven to be a powerful method to reveal detailed structures of the binding sites of cofactors including protein moieties and water molecules. Information available by FTIR difference spectroscopy includes hydrogen bonding and protonation state of chemical groups, which play an essential role in proton transfer and also in controlling redox reactions, but are often not available by X-ray crystallography. The FTIR investigations cover all the redox cofactors of Photosystem II in both the main and peripheral electron-transfer pathways, i.e., the manganese-cluster, the redox-active tyrosines Yz and YD, the primary donor P680, the primary acceptor pheophytin, the quinone acceptors QA and QB, the non-heme iron, cytochrome b559, chlorophyll Z, and β-carotene. This article reviews how the structures and reactions of these cofactors have been studied using mainly FTIR spectroscopy with the assistance of Raman spectroscopy.
10 schema:editor Na2a433d5e83948b0b2e2d17184de2a73
11 schema:genre chapter
12 schema:isAccessibleForFree false
13 schema:isPartOf N58e8a692b45d47ffaff4ff56233981b0
14 schema:keywords FTIR difference spectroscopy
15 FTIR investigation
16 FTIR spectroscopy
17 Fourier transform
18 P680
19 QA
20 QB
21 Raman spectroscopy
22 X-ray crystallography
23 YD
24 YZ
25 acceptor QA
26 analysis
27 article
28 assistance
29 b559
30 bonding
31 bonds
32 chemical bonds
33 chemical groups
34 chlorophyll Z
35 cofactor
36 crystallography
37 cytochrome b559
38 detailed structure
39 difference spectroscopy
40 electron transfer pathway
41 essential role
42 group
43 hydrogen bonding
44 information
45 interaction
46 investigation
47 iron
48 light-induced Fourier transform
49 manganese cluster
50 method
51 moiety
52 molecular analysis
53 molecular vibrations
54 molecules
55 non-heme iron
56 pathway
57 pheophytin
58 photosystem II
59 powerful method
60 primary acceptor pheophytin
61 primary donor P680
62 protein moiety
63 proton transfer
64 protonation state
65 quinone acceptor QA
66 reaction
67 redox cofactors
68 redox reactions
69 redox-active tyrosine YZ
70 role
71 sites
72 spectroscopy
73 state
74 structural information
75 structure
76 study
77 transfer
78 transform
79 tyrosine YZ
80 vibration
81 vibrational spectroscopy
82 water molecules
83 β-carotene
84 schema:name Molecular Analysis by Vibrational Spectroscopy
85 schema:pagination 367-387
86 schema:productId N270baead047743e59e352158e9243f19
87 Nefa09cd0aff14763a89c937436048e4a
88 schema:publisher Nf9b72f184896429f8660cd2455b93ecf
89 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030117698
90 https://doi.org/10.1007/1-4020-4254-x_17
91 schema:sdDatePublished 2022-11-24T21:15
92 schema:sdLicense https://scigraph.springernature.com/explorer/license/
93 schema:sdPublisher Nb79d15863dfa4c71941fd61188fdcc45
94 schema:url https://doi.org/10.1007/1-4020-4254-x_17
95 sgo:license sg:explorer/license/
96 sgo:sdDataset chapters
97 rdf:type schema:Chapter
98 N270baead047743e59e352158e9243f19 schema:name doi
99 schema:value 10.1007/1-4020-4254-x_17
100 rdf:type schema:PropertyValue
101 N58e8a692b45d47ffaff4ff56233981b0 schema:isbn 1-4020-4249-3
102 schema:name Photosystem II
103 rdf:type schema:Book
104 N5c985428efe74e0a8bb56a1bf382e625 rdf:first sg:person.0641716334.91
105 rdf:rest rdf:nil
106 Na109ccdc2aad493e8a76bb101874e52d rdf:first Na2d5539c39ac48ab801f5857684e8918
107 rdf:rest rdf:nil
108 Na2a433d5e83948b0b2e2d17184de2a73 rdf:first Naf65cba03b1e497e97d27e5cd74e1f16
109 rdf:rest Nd518fbb614574fa79a159fe4164258f1
110 Na2d5539c39ac48ab801f5857684e8918 schema:familyName Freeman
111 schema:givenName Joel A.
112 rdf:type schema:Person
113 Naf65cba03b1e497e97d27e5cd74e1f16 schema:familyName Wydrzynski
114 schema:givenName Thomas J.
115 rdf:type schema:Person
116 Nb79d15863dfa4c71941fd61188fdcc45 schema:name Springer Nature - SN SciGraph project
117 rdf:type schema:Organization
118 Nc7f181f6701c4cebbbd23f853b07c3e9 rdf:first sg:person.01134352213.65
119 rdf:rest N5c985428efe74e0a8bb56a1bf382e625
120 Nd518fbb614574fa79a159fe4164258f1 rdf:first Nf26a2066379047978f813900ac70a8a2
121 rdf:rest Na109ccdc2aad493e8a76bb101874e52d
122 Nefa09cd0aff14763a89c937436048e4a schema:name dimensions_id
123 schema:value pub.1030117698
124 rdf:type schema:PropertyValue
125 Nf26a2066379047978f813900ac70a8a2 schema:familyName Satoh
126 schema:givenName Kimiyuki
127 rdf:type schema:Person
128 Nf9b72f184896429f8660cd2455b93ecf schema:name Springer Nature
129 rdf:type schema:Organisation
130 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
131 schema:name Physical Sciences
132 rdf:type schema:DefinedTerm
133 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
134 schema:name Other Physical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
137 schema:name Chemical Sciences
138 rdf:type schema:DefinedTerm
139 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
140 schema:name Inorganic Chemistry
141 rdf:type schema:DefinedTerm
142 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
143 schema:name Physical Chemistry (incl. Structural)
144 rdf:type schema:DefinedTerm
145 sg:person.01134352213.65 schema:affiliation grid-institutes:grid.20515.33
146 schema:familyName Noguchi
147 schema:givenName Takumi
148 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01134352213.65
149 rdf:type schema:Person
150 sg:person.0641716334.91 schema:affiliation grid-institutes:grid.457335.3
151 schema:familyName Berthomieu
152 schema:givenName Catherine
153 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0641716334.91
154 rdf:type schema:Person
155 grid-institutes:grid.20515.33 schema:alternateName Institute of Materials Science, University of Tsukuba, 305-8573, Tsukuba, Ibaraki, Japan
156 schema:name Institute of Materials Science, University of Tsukuba, 305-8573, Tsukuba, Ibaraki, Japan
157 rdf:type schema:Organization
158 grid-institutes:grid.457335.3 schema:alternateName CEA/Cadarache, DSV DEVM, Laboratoire de Bioénergétique Cellulaire, UMR 6191 CNRS-CEA-Aix-Marseille II CEA 1000, Bât. 156, F-13108, Saint-Paul-lez-Durance, Cedex, France
159 schema:name CEA/Cadarache, DSV DEVM, Laboratoire de Bioénergétique Cellulaire, UMR 6191 CNRS-CEA-Aix-Marseille II CEA 1000, Bât. 156, F-13108, Saint-Paul-lez-Durance, Cedex, France
160 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...