The Converter Mechanism of Particle Acceleration and its Applications to the Unidentified EGRET Sources View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

E.V. Derishev , F.A. Aharonian , V.V. Kocharovsky , Vl.V. Kocharovsky

ABSTRACT

We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration. The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV—TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars. More... »

PAGES

21-30

Book

TITLE

Multiwavelength Approach to Unidentified Gamma-Ray Sources

ISBN

1-4020-3214-5

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/1-4020-3881-x_3

DOI

http://dx.doi.org/10.1007/1-4020-3881-x_3

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1023384183


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics", 
          "id": "https://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Derishev", 
        "givenName": "E.V.", 
        "id": "sg:person.010421317160.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010421317160.50"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Max Planck Institute for Nuclear Physics", 
          "id": "https://www.grid.ac/institutes/grid.419604.e", 
          "name": [
            "Max-Planck-Institut f\u00fcr Kernphysik, Saupfercheckweg 1, Heidelberg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aharonian", 
        "givenName": "F.A.", 
        "id": "sg:person.01354457257.24", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics", 
          "id": "https://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kocharovsky", 
        "givenName": "V.V.", 
        "id": "sg:person.0776657111.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776657111.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Applied Physics", 
          "id": "https://www.grid.ac/institutes/grid.410472.4", 
          "name": [
            "Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kocharovsky", 
        "givenName": "Vl.V.", 
        "id": "sg:person.0616141737.03", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616141737.03"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1088/0034-4885/64/4/201", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012807271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-8711.2001.04851.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017129743"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022666355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.75.386", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022666355"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027641893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.80.3911", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027641893"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/173397", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058504687"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/176448", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058507737"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration. The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV\u2014TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars.", 
    "editor": [
      {
        "familyName": "Cheng", 
        "givenName": "K.S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Romero", 
        "givenName": "G.E.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/1-4020-3881-x_3", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "1-4020-3214-5"
      ], 
      "name": "Multiwavelength Approach to Unidentified Gamma-Ray Sources", 
      "type": "Book"
    }, 
    "name": "The Converter Mechanism of Particle Acceleration and its Applications to the Unidentified EGRET Sources", 
    "pagination": "21-30", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/1-4020-3881-x_3"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "6f68b5f8cf29f3c0c8f7495ac923fffaa8d2ea80430d8980a0eb23539d7af00e"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1023384183"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin/Heidelberg", 
      "name": "Springer-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/1-4020-3881-x_3", 
      "https://app.dimensions.ai/details/publication/pub.1023384183"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T22:55", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8695_00000257.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/1-4020-3881-X_3"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3881-x_3'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3881-x_3'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3881-x_3'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3881-x_3'


 

This table displays all metadata directly associated to this object as RDF triples.

111 TRIPLES      23 PREDICATES      33 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/1-4020-3881-x_3 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author N619a3613cd6949fbb4240cb0dc2bfd6f
4 schema:citation https://doi.org/10.1046/j.1365-8711.2001.04851.x
5 https://doi.org/10.1086/173397
6 https://doi.org/10.1086/176448
7 https://doi.org/10.1088/0034-4885/64/4/201
8 https://doi.org/10.1103/physrevlett.75.386
9 https://doi.org/10.1103/physrevlett.80.3911
10 schema:datePublished 2005
11 schema:datePublishedReg 2005-01-01
12 schema:description We discuss the properties of gamma-ray radiation accompanying the acceleration of cosmic rays via the converter mechanism. The mechanism exploits multiple photon-induced conversions of high-energy particles from charged into neutral state (namely, protons to neutrons and electrons to photons) and back. Because a particle in the neutral state can freely cross the magnetic field lines, this allows to avoid both particle losses downstream and reduction in the energy gain factor, which normally takes place due to highly collimated distribution of accelerated particles. The converter mechanism efficiently operates in relativistic outflows under the conditions typical for Active Galactic Nuclei, Gamma-Ray Bursts, and microquasars, where it outperforms the standard diffusive shock acceleration. The accompanying radiation has a number of distinctive features, such as an increase of the maximum energy of synchrotron photons and peculiar radiation beam-pattern, whose opening angle is much wider at larger photon energies. This provides an opportunity to observe off-axis relativistic jets in GeV—TeV energy range. One of the implications is the possibility to explain high-latitude unidentified EGRET sources as off-axis but otherwise typical relativistic-jet sources, such as blazars.
13 schema:editor Ne9cd2cbf7d71447fba56dec2dc4a70d2
14 schema:genre chapter
15 schema:inLanguage en
16 schema:isAccessibleForFree false
17 schema:isPartOf N9ec1a3da74484bb0a958b5f9248d4c57
18 schema:name The Converter Mechanism of Particle Acceleration and its Applications to the Unidentified EGRET Sources
19 schema:pagination 21-30
20 schema:productId N4a0e97eb4910482db1911700c4c209ee
21 N59bacb27da7a4b0fad99020193492b47
22 Nc5177ea51c3b4d61800b4cf9dbdc79ea
23 schema:publisher N0f81d67b3220495c826be5b1e682ea36
24 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023384183
25 https://doi.org/10.1007/1-4020-3881-x_3
26 schema:sdDatePublished 2019-04-15T22:55
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher Nf02a213c3cfc49a7b4e6043c983aaf78
29 schema:url http://link.springer.com/10.1007/1-4020-3881-X_3
30 sgo:license sg:explorer/license/
31 sgo:sdDataset chapters
32 rdf:type schema:Chapter
33 N0f81d67b3220495c826be5b1e682ea36 schema:location Berlin/Heidelberg
34 schema:name Springer-Verlag
35 rdf:type schema:Organisation
36 N4a0e97eb4910482db1911700c4c209ee schema:name doi
37 schema:value 10.1007/1-4020-3881-x_3
38 rdf:type schema:PropertyValue
39 N59332a4371a04a2a81fe381e0969cc18 rdf:first Nd0452a01447c43cc94b88d49acc40250
40 rdf:rest rdf:nil
41 N59bacb27da7a4b0fad99020193492b47 schema:name dimensions_id
42 schema:value pub.1023384183
43 rdf:type schema:PropertyValue
44 N619a3613cd6949fbb4240cb0dc2bfd6f rdf:first sg:person.010421317160.50
45 rdf:rest Naa9ab67bccbd472d97e980bb76da8047
46 N809fe22671bf405fb7dee0193f68f853 rdf:first sg:person.0776657111.90
47 rdf:rest N8809654a18ea4e17ae1430cea6584e17
48 N8809654a18ea4e17ae1430cea6584e17 rdf:first sg:person.0616141737.03
49 rdf:rest rdf:nil
50 N9ec1a3da74484bb0a958b5f9248d4c57 schema:isbn 1-4020-3214-5
51 schema:name Multiwavelength Approach to Unidentified Gamma-Ray Sources
52 rdf:type schema:Book
53 Naa9ab67bccbd472d97e980bb76da8047 rdf:first sg:person.01354457257.24
54 rdf:rest N809fe22671bf405fb7dee0193f68f853
55 Nc5177ea51c3b4d61800b4cf9dbdc79ea schema:name readcube_id
56 schema:value 6f68b5f8cf29f3c0c8f7495ac923fffaa8d2ea80430d8980a0eb23539d7af00e
57 rdf:type schema:PropertyValue
58 Nc77e1d833fbc44c28ff413d8c8eb1207 schema:familyName Cheng
59 schema:givenName K.S.
60 rdf:type schema:Person
61 Nd0452a01447c43cc94b88d49acc40250 schema:familyName Romero
62 schema:givenName G.E.
63 rdf:type schema:Person
64 Ne9cd2cbf7d71447fba56dec2dc4a70d2 rdf:first Nc77e1d833fbc44c28ff413d8c8eb1207
65 rdf:rest N59332a4371a04a2a81fe381e0969cc18
66 Nf02a213c3cfc49a7b4e6043c983aaf78 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
69 schema:name Physical Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
72 schema:name Other Physical Sciences
73 rdf:type schema:DefinedTerm
74 sg:person.010421317160.50 schema:affiliation https://www.grid.ac/institutes/grid.410472.4
75 schema:familyName Derishev
76 schema:givenName E.V.
77 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010421317160.50
78 rdf:type schema:Person
79 sg:person.01354457257.24 schema:affiliation https://www.grid.ac/institutes/grid.419604.e
80 schema:familyName Aharonian
81 schema:givenName F.A.
82 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354457257.24
83 rdf:type schema:Person
84 sg:person.0616141737.03 schema:affiliation https://www.grid.ac/institutes/grid.410472.4
85 schema:familyName Kocharovsky
86 schema:givenName Vl.V.
87 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0616141737.03
88 rdf:type schema:Person
89 sg:person.0776657111.90 schema:affiliation https://www.grid.ac/institutes/grid.410472.4
90 schema:familyName Kocharovsky
91 schema:givenName V.V.
92 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0776657111.90
93 rdf:type schema:Person
94 https://doi.org/10.1046/j.1365-8711.2001.04851.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1017129743
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1086/173397 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058504687
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1086/176448 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058507737
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1088/0034-4885/64/4/201 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012807271
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.75.386 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022666355
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.80.3911 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027641893
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.410472.4 schema:alternateName Institute of Applied Physics
107 schema:name Institute of Applied Physics, 46 Ulyanov st., Nizhny Novgorod, Russia
108 rdf:type schema:Organization
109 https://www.grid.ac/institutes/grid.419604.e schema:alternateName Max Planck Institute for Nuclear Physics
110 schema:name Max-Planck-Institut für Kernphysik, Saupfercheckweg 1, Heidelberg, Germany
111 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...