Magnetic Fields Of Compact Stars With Superconducting Quark Cores View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

David M. Sedrakian , David Blaschke , Karen M. Shahabasyan

ABSTRACT

The behavior of the magnetic field of a rotating neutron star with a superconducting color-flavor-locked (CFL) quark matter core is investigated in the framework of the Ginzburg-Landau theory. We take into account the simultaneous coupling of the diquark condensate field to the magnetic and gluomagnetic gauge fields. We solve the Ginzburg-Landau equations by properly taking into account the boundary conditions, in particular the gluon confinement condition. The rotation of the CFL condensate produces neutral vortices with normal cores. We find the distribution of the magnetic field in both the quark and the hadronic phases and show that a magnetic field penetrates into quark phase through normal cores of the rotational vortices. As a result, equivalent “magnetic vortices” are formed due to the induced Meissner currents. More... »

PAGES

263-276

Book

TITLE

Superdense QCD Matter and Compact Stars

ISBN

1-4020-3428-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/1-4020-3430-x_15

DOI

http://dx.doi.org/10.1007/1-4020-3430-x_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001425126


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0202", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Atomic, Molecular, Nuclear, Particle and Plasma Physics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Department of Physics, Yerevan State University, 375025\u00a0Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sedrakian", 
        "givenName": "David M.", 
        "id": "sg:person.010547741535.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547741535.23"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "University of Rostock", 
          "id": "https://www.grid.ac/institutes/grid.10493.3f", 
          "name": [
            "Fachbereich Physik, Universitat Rostock, D-18051 Rostock, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Blaschke", 
        "givenName": "David", 
        "id": "sg:person.012015754637.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012015754637.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Yerevan State University", 
          "id": "https://www.grid.ac/institutes/grid.21072.36", 
          "name": [
            "Department of Physics, Yerevan State University, 375025 Yerevan, Armenia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shahabasyan", 
        "givenName": "Karen M.", 
        "id": "sg:person.013044347401.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013044347401.71"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1103/physrevlett.83.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000541035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.83.37", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000541035"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002501201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.81.53", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002501201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(99)00830-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013881260"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018364652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.82.3956", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018364652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00668-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030072784"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(00)00063-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034664884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90123-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036224009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(77)90123-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036224009"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(84)90145-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047276319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-1573(84)90145-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047276319"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/175876", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058507165"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "The behavior of the magnetic field of a rotating neutron star with a superconducting color-flavor-locked (CFL) quark matter core is investigated in the framework of the Ginzburg-Landau theory. We take into account the simultaneous coupling of the diquark condensate field to the magnetic and gluomagnetic gauge fields. We solve the Ginzburg-Landau equations by properly taking into account the boundary conditions, in particular the gluon confinement condition. The rotation of the CFL condensate produces neutral vortices with normal cores. We find the distribution of the magnetic field in both the quark and the hadronic phases and show that a magnetic field penetrates into quark phase through normal cores of the rotational vortices. As a result, equivalent \u201cmagnetic vortices\u201d are formed due to the induced Meissner currents.", 
    "editor": [
      {
        "familyName": "Blaschke", 
        "givenName": "David", 
        "type": "Person"
      }, 
      {
        "familyName": "Sedrakian", 
        "givenName": "David", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/1-4020-3430-x_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "1-4020-3428-8"
      ], 
      "name": "Superdense QCD Matter and Compact Stars", 
      "type": "Book"
    }, 
    "name": "MAGNETIC FIELDS OF COMPACT STARS WITH SUPERCONDUCTING QUARK CORES", 
    "pagination": "263-276", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/1-4020-3430-x_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "06ca1def006ffe302d2dda0917b75b6ddfaf444d2083006a9933e62fe0e5dbd3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001425126"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Kluwer Academic Publishers", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/1-4020-3430-x_15", 
      "https://app.dimensions.ai/details/publication/pub.1001425126"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000243.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/1-4020-3430-X_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3430-x_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3430-x_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3430-x_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3430-x_15'


 

This table displays all metadata directly associated to this object as RDF triples.

114 TRIPLES      23 PREDICATES      36 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/1-4020-3430-x_15 schema:about anzsrc-for:02
2 anzsrc-for:0202
3 schema:author Nad8013bb0783496fbab4f4ddff212a00
4 schema:citation https://doi.org/10.1016/0370-1573(84)90145-5
5 https://doi.org/10.1016/0550-3213(77)90123-7
6 https://doi.org/10.1016/s0550-3213(00)00063-8
7 https://doi.org/10.1016/s0550-3213(98)00668-3
8 https://doi.org/10.1016/s0550-3213(99)00830-5
9 https://doi.org/10.1086/175876
10 https://doi.org/10.1103/physrevlett.81.53
11 https://doi.org/10.1103/physrevlett.82.3956
12 https://doi.org/10.1103/physrevlett.83.37
13 schema:datePublished 2006
14 schema:datePublishedReg 2006-01-01
15 schema:description The behavior of the magnetic field of a rotating neutron star with a superconducting color-flavor-locked (CFL) quark matter core is investigated in the framework of the Ginzburg-Landau theory. We take into account the simultaneous coupling of the diquark condensate field to the magnetic and gluomagnetic gauge fields. We solve the Ginzburg-Landau equations by properly taking into account the boundary conditions, in particular the gluon confinement condition. The rotation of the CFL condensate produces neutral vortices with normal cores. We find the distribution of the magnetic field in both the quark and the hadronic phases and show that a magnetic field penetrates into quark phase through normal cores of the rotational vortices. As a result, equivalent “magnetic vortices” are formed due to the induced Meissner currents.
16 schema:editor Nc0446190198a4b3ca29de26fa7c5ef07
17 schema:genre chapter
18 schema:inLanguage en
19 schema:isAccessibleForFree false
20 schema:isPartOf N63db69565987423bb65f7f96466ce344
21 schema:name MAGNETIC FIELDS OF COMPACT STARS WITH SUPERCONDUCTING QUARK CORES
22 schema:pagination 263-276
23 schema:productId N293d6753afe04670a49fa1ec6b027af8
24 Na22762d133da4de9a8c4b1cd070bb445
25 Ne73a190d8c1248d98d2eace3a501cc74
26 schema:publisher N9630a3f66416409e9cc4c5d40b7bb304
27 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001425126
28 https://doi.org/10.1007/1-4020-3430-x_15
29 schema:sdDatePublished 2019-04-15T10:30
30 schema:sdLicense https://scigraph.springernature.com/explorer/license/
31 schema:sdPublisher N41ef480b5d664db3b9f4972f06728b38
32 schema:url http://link.springer.com/10.1007/1-4020-3430-X_15
33 sgo:license sg:explorer/license/
34 sgo:sdDataset chapters
35 rdf:type schema:Chapter
36 N293d6753afe04670a49fa1ec6b027af8 schema:name doi
37 schema:value 10.1007/1-4020-3430-x_15
38 rdf:type schema:PropertyValue
39 N41ef480b5d664db3b9f4972f06728b38 schema:name Springer Nature - SN SciGraph project
40 rdf:type schema:Organization
41 N5c73b273656e4f4da7c85552472637e0 schema:familyName Blaschke
42 schema:givenName David
43 rdf:type schema:Person
44 N63db69565987423bb65f7f96466ce344 schema:isbn 1-4020-3428-8
45 schema:name Superdense QCD Matter and Compact Stars
46 rdf:type schema:Book
47 N71c3cf27a24640c3b7ef1c89b56aaf05 rdf:first sg:person.013044347401.71
48 rdf:rest rdf:nil
49 N9630a3f66416409e9cc4c5d40b7bb304 schema:location Dordrecht
50 schema:name Kluwer Academic Publishers
51 rdf:type schema:Organisation
52 N9f458af62147432e9b6139e5c4401538 rdf:first sg:person.012015754637.26
53 rdf:rest N71c3cf27a24640c3b7ef1c89b56aaf05
54 Na22762d133da4de9a8c4b1cd070bb445 schema:name dimensions_id
55 schema:value pub.1001425126
56 rdf:type schema:PropertyValue
57 Nad8013bb0783496fbab4f4ddff212a00 rdf:first sg:person.010547741535.23
58 rdf:rest N9f458af62147432e9b6139e5c4401538
59 Nb26181c9a47d4d3ebd60aed368ff8ac6 schema:familyName Sedrakian
60 schema:givenName David
61 rdf:type schema:Person
62 Nc0446190198a4b3ca29de26fa7c5ef07 rdf:first N5c73b273656e4f4da7c85552472637e0
63 rdf:rest Ne7d91290f63544e5929051c20c993d5e
64 Ne73a190d8c1248d98d2eace3a501cc74 schema:name readcube_id
65 schema:value 06ca1def006ffe302d2dda0917b75b6ddfaf444d2083006a9933e62fe0e5dbd3
66 rdf:type schema:PropertyValue
67 Ne7d91290f63544e5929051c20c993d5e rdf:first Nb26181c9a47d4d3ebd60aed368ff8ac6
68 rdf:rest rdf:nil
69 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
70 schema:name Physical Sciences
71 rdf:type schema:DefinedTerm
72 anzsrc-for:0202 schema:inDefinedTermSet anzsrc-for:
73 schema:name Atomic, Molecular, Nuclear, Particle and Plasma Physics
74 rdf:type schema:DefinedTerm
75 sg:person.010547741535.23 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
76 schema:familyName Sedrakian
77 schema:givenName David M.
78 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010547741535.23
79 rdf:type schema:Person
80 sg:person.012015754637.26 schema:affiliation https://www.grid.ac/institutes/grid.10493.3f
81 schema:familyName Blaschke
82 schema:givenName David
83 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012015754637.26
84 rdf:type schema:Person
85 sg:person.013044347401.71 schema:affiliation https://www.grid.ac/institutes/grid.21072.36
86 schema:familyName Shahabasyan
87 schema:givenName Karen M.
88 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013044347401.71
89 rdf:type schema:Person
90 https://doi.org/10.1016/0370-1573(84)90145-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047276319
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0550-3213(77)90123-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036224009
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/s0550-3213(00)00063-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034664884
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0550-3213(98)00668-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030072784
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s0550-3213(99)00830-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013881260
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1086/175876 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058507165
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.81.53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002501201
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.82.3956 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018364652
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1103/physrevlett.83.37 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000541035
107 rdf:type schema:CreativeWork
108 https://www.grid.ac/institutes/grid.10493.3f schema:alternateName University of Rostock
109 schema:name Fachbereich Physik, Universitat Rostock, D-18051 Rostock, Germany
110 rdf:type schema:Organization
111 https://www.grid.ac/institutes/grid.21072.36 schema:alternateName Yerevan State University
112 schema:name Department of Physics, Yerevan State University, 375025 Yerevan, Armenia
113 Department of Physics, Yerevan State University, 375025 Yerevan, Armenia
114 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...