Magnetic Resonance Study of Nanodiamonds View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005-01-01

AUTHORS

A.I. Shames , A.M. Panich , W. Kempiíski , M.V. Baidakova , V.Yu. Osipov , T. Enoki , A.Ya. Vul’

ABSTRACT

Magnetic resonance techniques, namely Electron Paramagnetic Resonance (EPR) and solid state Nuclear Magnetic Resonance (NMR), are powerful non-destructive tools for studying electron-nuclear and crystalline structure, inherent electronic and magnetic properties and transformations in carbon-based nanomaterials. EPR allows to control purity of ultradispersed diamond (UDD) samples, to study the origin, location and spin-lattice relaxation of radical-type carbon-inherited paramagnetic centers (RPC) as well as their transformation during the process of temperature driven diamond-to-graphite conversion. Solid state NMR on 1H and 13C nuclei provide one with information on the crystalline quality, allows quantitative estimation of the number of different allotropic forms, and reveals electron-nuclear interactions within the UDD samples under study. Results of recent EPR and 13C NMR study of pure and transition metal doped UDD samples, obtained by detonation technique, are reported and discussed. In addition to characteristic EPR signals, originated form para- and ferromagnetic impurities and doping ions, the UDD samples show a high concentration of RPC (up to 1020 spin/gram), which are due to structural defects (dangling C-C bonds) on the diamond cluster surface. In-situ EPR sample’s vacuumization experiment in conjunction with precise SQUID magnetization measurements allowed concluding that each UDD particle carries a single spin (dangling bond) per each from 8 crystal (111) facets bounded the particle. More... »

PAGES

271-282

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/1-4020-3322-2_21

DOI

http://dx.doi.org/10.1007/1-4020-3322-2_21

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010519525


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0302", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Inorganic Chemistry", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Physics, Ben-Gurion University of the Negev, P.O.Box 653, 84 105, Be\u2019er-Sheva, Israel", 
          "id": "http://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Physics, Ben-Gurion University of the Negev, P.O.Box 653, 84 105, Be\u2019er-Sheva, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shames", 
        "givenName": "A.I.", 
        "id": "sg:person.0775760400.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775760400.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Physics, Ben-Gurion University of the Negev, P.O.Box 653, 84 105, Be\u2019er-Sheva, Israel", 
          "id": "http://www.grid.ac/institutes/grid.7489.2", 
          "name": [
            "Department of Physics, Ben-Gurion University of the Negev, P.O.Box 653, 84 105, Be\u2019er-Sheva, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Panich", 
        "givenName": "A.M.", 
        "id": "sg:person.0766661012.63", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766661012.63"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznahi, Poland", 
          "id": "http://www.grid.ac/institutes/grid.425041.6", 
          "name": [
            "Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznahi, Poland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Kempi\u00edski", 
        "givenName": "W.", 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Ioffe Physico-Technical Institute, 26 Polytechnicheskaya, 194021, St. Petersburg, Russia", 
            "Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Baidakova", 
        "givenName": "M.V.", 
        "id": "sg:person.015444514517.48", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015444514517.48"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Ioffe Physico-Technical Institute, 26 Polytechnicheskaya, 194021, St. Petersburg, Russia", 
            "Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Osipov", 
        "givenName": "V.Yu.", 
        "id": "sg:person.011737110415.43", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737110415.43"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan", 
          "id": "http://www.grid.ac/institutes/grid.32197.3e", 
          "name": [
            "Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Enoki", 
        "givenName": "T.", 
        "id": "sg:person.011542125231.40", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011542125231.40"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Ioffe Physico-Technical Institute, 26 Polytechnicheskaya, 194021, St. Petersburg, Russia", 
          "id": "http://www.grid.ac/institutes/grid.423485.c", 
          "name": [
            "Ioffe Physico-Technical Institute, 26 Polytechnicheskaya, 194021, St. Petersburg, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Vul\u2019", 
        "givenName": "A.Ya.", 
        "id": "sg:person.014132507145.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014132507145.02"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-01-01", 
    "datePublishedReg": "2005-01-01", 
    "description": "Magnetic resonance techniques, namely Electron Paramagnetic Resonance (EPR) and solid state Nuclear Magnetic Resonance (NMR), are powerful non-destructive tools for studying electron-nuclear and crystalline structure, inherent electronic and magnetic properties and transformations in carbon-based nanomaterials. EPR allows to control purity of ultradispersed diamond (UDD) samples, to study the origin, location and spin-lattice relaxation of radical-type carbon-inherited paramagnetic centers (RPC) as well as their transformation during the process of temperature driven diamond-to-graphite conversion. Solid state NMR on 1H and 13C nuclei provide one with information on the crystalline quality, allows quantitative estimation of the number of different allotropic forms, and reveals electron-nuclear interactions within the UDD samples under study. Results of recent EPR and 13C NMR study of pure and transition metal doped UDD samples, obtained by detonation technique, are reported and discussed. In addition to characteristic EPR signals, originated form para- and ferromagnetic impurities and doping ions, the UDD samples show a high concentration of RPC (up to 1020 spin/gram), which are due to structural defects (dangling C-C bonds) on the diamond cluster surface. In-situ EPR sample\u2019s vacuumization experiment in conjunction with precise SQUID magnetization measurements allowed concluding that each UDD particle carries a single spin (dangling bond) per each from 8 crystal (111) facets bounded the particle.", 
    "editor": [
      {
        "familyName": "Gruen", 
        "givenName": "Dieter M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Shenderova", 
        "givenName": "Olga A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Vul\u2019", 
        "givenName": "Alexander Ya.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/1-4020-3322-2_21", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-1-4020-3320-9", 
        "978-1-4020-3322-3"
      ], 
      "name": "Synthesis, Properties and Applications of Ultrananocrystalline Diamond", 
      "type": "Book"
    }, 
    "keywords": [
      "electron paramagnetic resonance", 
      "solid state nuclear magnetic resonance", 
      "state nuclear magnetic resonance", 
      "nuclear magnetic resonance", 
      "carbon-based nanomaterials", 
      "different allotropic forms", 
      "recent electron paramagnetic resonance", 
      "electron-nuclear interaction", 
      "characteristic EPR signal", 
      "UDD particles", 
      "magnetic resonance studies", 
      "magnetic resonance techniques", 
      "detonation technique", 
      "transition metals", 
      "powerful non-destructive tool", 
      "crystal facets", 
      "paramagnetic resonance", 
      "spin-lattice relaxation", 
      "cluster surface", 
      "allotropic forms", 
      "SQUID magnetization measurements", 
      "NMR studies", 
      "crystalline structure", 
      "paramagnetic centers", 
      "resonance studies", 
      "EPR signal", 
      "magnetic properties", 
      "resonance techniques", 
      "single spin", 
      "diamond samples", 
      "ferromagnetic impurities", 
      "graphite conversion", 
      "magnetization measurements", 
      "crystalline quality", 
      "non-destructive tool", 
      "structural defects", 
      "magnetic resonance", 
      "nanomaterials", 
      "resonance", 
      "particles", 
      "ions", 
      "nanodiamonds", 
      "metals", 
      "high concentrations", 
      "samples", 
      "purity", 
      "impurities", 
      "quantitative estimation", 
      "spin", 
      "para", 
      "conversion", 
      "surface", 
      "diamond", 
      "properties", 
      "process of temperature", 
      "structure", 
      "temperature", 
      "transformation", 
      "relaxation", 
      "nucleus", 
      "technique", 
      "concentration", 
      "measurements", 
      "interaction", 
      "process", 
      "addition", 
      "signals", 
      "experiments", 
      "facets", 
      "study", 
      "defects", 
      "form", 
      "origin", 
      "center", 
      "conjunction", 
      "results", 
      "tool", 
      "information", 
      "number", 
      "location", 
      "quality", 
      "estimation", 
      "ultradispersed diamond (UDD) samples", 
      "RPC", 
      "carbon-inherited paramagnetic centers", 
      "UDD samples", 
      "form para", 
      "diamond cluster surface", 
      "EPR sample\u2019s vacuumization experiment", 
      "sample\u2019s vacuumization experiment", 
      "\u2019s vacuumization experiment", 
      "precise SQUID magnetization measurements"
    ], 
    "name": "Magnetic Resonance Study of Nanodiamonds", 
    "pagination": "271-282", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010519525"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/1-4020-3322-2_21"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/1-4020-3322-2_21", 
      "https://app.dimensions.ai/details/publication/pub.1010519525"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T20:12", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_50.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/1-4020-3322-2_21"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3322-2_21'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3322-2_21'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3322-2_21'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3322-2_21'


 

This table displays all metadata directly associated to this object as RDF triples.

225 TRIPLES      23 PREDICATES      120 URIs      110 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/1-4020-3322-2_21 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 anzsrc-for:03
4 anzsrc-for:0302
5 anzsrc-for:0306
6 schema:author Nc6af42197292476fb244c9f27cc9fb8e
7 schema:datePublished 2005-01-01
8 schema:datePublishedReg 2005-01-01
9 schema:description Magnetic resonance techniques, namely Electron Paramagnetic Resonance (EPR) and solid state Nuclear Magnetic Resonance (NMR), are powerful non-destructive tools for studying electron-nuclear and crystalline structure, inherent electronic and magnetic properties and transformations in carbon-based nanomaterials. EPR allows to control purity of ultradispersed diamond (UDD) samples, to study the origin, location and spin-lattice relaxation of radical-type carbon-inherited paramagnetic centers (RPC) as well as their transformation during the process of temperature driven diamond-to-graphite conversion. Solid state NMR on 1H and 13C nuclei provide one with information on the crystalline quality, allows quantitative estimation of the number of different allotropic forms, and reveals electron-nuclear interactions within the UDD samples under study. Results of recent EPR and 13C NMR study of pure and transition metal doped UDD samples, obtained by detonation technique, are reported and discussed. In addition to characteristic EPR signals, originated form para- and ferromagnetic impurities and doping ions, the UDD samples show a high concentration of RPC (up to 1020 spin/gram), which are due to structural defects (dangling C-C bonds) on the diamond cluster surface. In-situ EPR sample’s vacuumization experiment in conjunction with precise SQUID magnetization measurements allowed concluding that each UDD particle carries a single spin (dangling bond) per each from 8 crystal (111) facets bounded the particle.
10 schema:editor N63ba97dd63b5415dbdabd7f924b97929
11 schema:genre chapter
12 schema:inLanguage en
13 schema:isAccessibleForFree false
14 schema:isPartOf N555dd21dedef49d3bc2e2c4cad9ecc95
15 schema:keywords EPR sample’s vacuumization experiment
16 EPR signal
17 NMR studies
18 RPC
19 SQUID magnetization measurements
20 UDD particles
21 UDD samples
22 addition
23 allotropic forms
24 carbon-based nanomaterials
25 carbon-inherited paramagnetic centers
26 center
27 characteristic EPR signal
28 cluster surface
29 concentration
30 conjunction
31 conversion
32 crystal facets
33 crystalline quality
34 crystalline structure
35 defects
36 detonation technique
37 diamond
38 diamond cluster surface
39 diamond samples
40 different allotropic forms
41 electron paramagnetic resonance
42 electron-nuclear interaction
43 estimation
44 experiments
45 facets
46 ferromagnetic impurities
47 form
48 form para
49 graphite conversion
50 high concentrations
51 impurities
52 information
53 interaction
54 ions
55 location
56 magnetic properties
57 magnetic resonance
58 magnetic resonance studies
59 magnetic resonance techniques
60 magnetization measurements
61 measurements
62 metals
63 nanodiamonds
64 nanomaterials
65 non-destructive tool
66 nuclear magnetic resonance
67 nucleus
68 number
69 origin
70 para
71 paramagnetic centers
72 paramagnetic resonance
73 particles
74 powerful non-destructive tool
75 precise SQUID magnetization measurements
76 process
77 process of temperature
78 properties
79 purity
80 quality
81 quantitative estimation
82 recent electron paramagnetic resonance
83 relaxation
84 resonance
85 resonance studies
86 resonance techniques
87 results
88 samples
89 sample’s vacuumization experiment
90 signals
91 single spin
92 solid state nuclear magnetic resonance
93 spin
94 spin-lattice relaxation
95 state nuclear magnetic resonance
96 structural defects
97 structure
98 study
99 surface
100 technique
101 temperature
102 tool
103 transformation
104 transition metals
105 ultradispersed diamond (UDD) samples
106 ’s vacuumization experiment
107 schema:name Magnetic Resonance Study of Nanodiamonds
108 schema:pagination 271-282
109 schema:productId N1994e96eca4f488c92291b7656148879
110 N2722a3ad03244db3a66c56350248c85e
111 schema:publisher N124fd3b81785429ba9fc73577540ecbc
112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010519525
113 https://doi.org/10.1007/1-4020-3322-2_21
114 schema:sdDatePublished 2021-12-01T20:12
115 schema:sdLicense https://scigraph.springernature.com/explorer/license/
116 schema:sdPublisher N116350122ee84b67a4678fe8c33fbaf0
117 schema:url https://doi.org/10.1007/1-4020-3322-2_21
118 sgo:license sg:explorer/license/
119 sgo:sdDataset chapters
120 rdf:type schema:Chapter
121 N116350122ee84b67a4678fe8c33fbaf0 schema:name Springer Nature - SN SciGraph project
122 rdf:type schema:Organization
123 N124fd3b81785429ba9fc73577540ecbc schema:name Springer Nature
124 rdf:type schema:Organisation
125 N16bedd90a212495dbd36404136689706 rdf:first Nbc00da5f96fe4ecc86090320d535e959
126 rdf:rest N70b7fd52dfe94cee8df81c7492464565
127 N1994e96eca4f488c92291b7656148879 schema:name dimensions_id
128 schema:value pub.1010519525
129 rdf:type schema:PropertyValue
130 N2722a3ad03244db3a66c56350248c85e schema:name doi
131 schema:value 10.1007/1-4020-3322-2_21
132 rdf:type schema:PropertyValue
133 N32fa44b085f04e1d89e3d9a8006b43d3 rdf:first N3b818455b2ef40049f65a6c14b1e019b
134 rdf:rest N9b9f6edd1c644bf592c718573f6f03c2
135 N3b818455b2ef40049f65a6c14b1e019b schema:affiliation grid-institutes:grid.425041.6
136 schema:familyName Kempiíski
137 schema:givenName W.
138 rdf:type schema:Person
139 N3d2fe44a5c2740a5aa4c2b1b19fa560d rdf:first sg:person.011737110415.43
140 rdf:rest Na64f24439c3343c09f0cc61eba0a566e
141 N555dd21dedef49d3bc2e2c4cad9ecc95 schema:isbn 978-1-4020-3320-9
142 978-1-4020-3322-3
143 schema:name Synthesis, Properties and Applications of Ultrananocrystalline Diamond
144 rdf:type schema:Book
145 N63ba97dd63b5415dbdabd7f924b97929 rdf:first N9ae5a45991054532a582db1803be6519
146 rdf:rest N16bedd90a212495dbd36404136689706
147 N70b7fd52dfe94cee8df81c7492464565 rdf:first Na09326849b5545bb8b2869094333819f
148 rdf:rest rdf:nil
149 N9ae5a45991054532a582db1803be6519 schema:familyName Gruen
150 schema:givenName Dieter M.
151 rdf:type schema:Person
152 N9b9f6edd1c644bf592c718573f6f03c2 rdf:first sg:person.015444514517.48
153 rdf:rest N3d2fe44a5c2740a5aa4c2b1b19fa560d
154 Na09326849b5545bb8b2869094333819f schema:familyName Vul’
155 schema:givenName Alexander Ya.
156 rdf:type schema:Person
157 Na1fb779c19e046d99e877c6c6d074790 rdf:first sg:person.014132507145.02
158 rdf:rest rdf:nil
159 Na64f24439c3343c09f0cc61eba0a566e rdf:first sg:person.011542125231.40
160 rdf:rest Na1fb779c19e046d99e877c6c6d074790
161 Nbc00da5f96fe4ecc86090320d535e959 schema:familyName Shenderova
162 schema:givenName Olga A.
163 rdf:type schema:Person
164 Nc6af42197292476fb244c9f27cc9fb8e rdf:first sg:person.0775760400.49
165 rdf:rest Nf8b5243fcbe3498190c9b305b8068222
166 Nf8b5243fcbe3498190c9b305b8068222 rdf:first sg:person.0766661012.63
167 rdf:rest N32fa44b085f04e1d89e3d9a8006b43d3
168 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
169 schema:name Physical Sciences
170 rdf:type schema:DefinedTerm
171 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
172 schema:name Other Physical Sciences
173 rdf:type schema:DefinedTerm
174 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
175 schema:name Chemical Sciences
176 rdf:type schema:DefinedTerm
177 anzsrc-for:0302 schema:inDefinedTermSet anzsrc-for:
178 schema:name Inorganic Chemistry
179 rdf:type schema:DefinedTerm
180 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
181 schema:name Physical Chemistry (incl. Structural)
182 rdf:type schema:DefinedTerm
183 sg:person.011542125231.40 schema:affiliation grid-institutes:grid.32197.3e
184 schema:familyName Enoki
185 schema:givenName T.
186 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011542125231.40
187 rdf:type schema:Person
188 sg:person.011737110415.43 schema:affiliation grid-institutes:grid.32197.3e
189 schema:familyName Osipov
190 schema:givenName V.Yu.
191 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011737110415.43
192 rdf:type schema:Person
193 sg:person.014132507145.02 schema:affiliation grid-institutes:grid.423485.c
194 schema:familyName Vul’
195 schema:givenName A.Ya.
196 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014132507145.02
197 rdf:type schema:Person
198 sg:person.015444514517.48 schema:affiliation grid-institutes:grid.32197.3e
199 schema:familyName Baidakova
200 schema:givenName M.V.
201 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015444514517.48
202 rdf:type schema:Person
203 sg:person.0766661012.63 schema:affiliation grid-institutes:grid.7489.2
204 schema:familyName Panich
205 schema:givenName A.M.
206 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0766661012.63
207 rdf:type schema:Person
208 sg:person.0775760400.49 schema:affiliation grid-institutes:grid.7489.2
209 schema:familyName Shames
210 schema:givenName A.I.
211 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0775760400.49
212 rdf:type schema:Person
213 grid-institutes:grid.32197.3e schema:alternateName Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
214 schema:name Department of Chemistry, Tokyo Institute of Technology, 2-12-1, Ookayama, Meguro-ku, 152-8551, Tokyo, Japan
215 Ioffe Physico-Technical Institute, 26 Polytechnicheskaya, 194021, St. Petersburg, Russia
216 rdf:type schema:Organization
217 grid-institutes:grid.423485.c schema:alternateName Ioffe Physico-Technical Institute, 26 Polytechnicheskaya, 194021, St. Petersburg, Russia
218 schema:name Ioffe Physico-Technical Institute, 26 Polytechnicheskaya, 194021, St. Petersburg, Russia
219 rdf:type schema:Organization
220 grid-institutes:grid.425041.6 schema:alternateName Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznahi, Poland
221 schema:name Institute of Molecular Physics, Polish Academy of Sciences, Smoluchowskiego 17, 60-179, Poznahi, Poland
222 rdf:type schema:Organization
223 grid-institutes:grid.7489.2 schema:alternateName Department of Physics, Ben-Gurion University of the Negev, P.O.Box 653, 84 105, Be’er-Sheva, Israel
224 schema:name Department of Physics, Ben-Gurion University of the Negev, P.O.Box 653, 84 105, Be’er-Sheva, Israel
225 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...