Improvements in the Peptide Mass Fingerprint Protein Identification View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

WV. Bienvenut , C. Hoogland , A. Greco , M. Heller , E. Gasteiger , RD. Appel , JJ. Diaz , JC. Sanchez , DF. Hochstrasser

ABSTRACT

Genome sequencing projects produce large amounts of information that could be translated into potential protein sequences. Such amounts of material continuously increase protein database sizes. At present, 15 times more protein sequences are available in the SWISS-PROT and TrEMBL databases than 8 years ago in SWISS-PROT. One of the methods of choice for protein identification makes use of specific endoproteolytic cleavage followed by the MALDI-MS analysis of the digested product. Since 1993, when this technique was first demonstrated, the conditions required for a correct identification have changed dramatically. Whilst 4–5 peptides with an accuracy of 2–3 Da were sufficient for a correct identification in 1993, 10–13 peptides with less than 60 ppm mass error are now required for Human and E. coli proteins. This evolution is directly related to the continuous increase of protein database sizes, which causes an increase of the number of false positive matches in identification results. Utilisation of an information complement deduced from the primary protein sequence in the process of identification by peptide mass fingerprints can help to increase confidence in the identification results. In this article, we propose the exchange of labile hydrogen atoms with deuterium atoms. The exchange reaction with optimised techniques has shown an average 95% of hydrogen/deuterium exchange on tryptic peptides. This level of exchange was sufficient to single out one or more peptides from a list of potential candidate proteins due to the dependence of hydrogen/deuterium exchange on the peptide primary structure. This technique also has clear advantages in the identification of small proteins where direct protein identification is impaired by the limited number of endoproteolytic peptides. Then, primary sequence information obtained with this technique could help to identify proteins with high confidence without any expensive tandem mass spectrometer instruments. More... »

PAGES

189-207

Book

TITLE

Acceleration and Improvement of Protein Identification by Mass Spectrometry

ISBN

1-4020-3318-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/1-4020-3319-2_6

DOI

http://dx.doi.org/10.1007/1-4020-3319-2_6

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1009447389


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Bienvenut", 
        "givenName": "WV.", 
        "id": "sg:person.012412514755.12", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412514755.12"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Hoogland", 
        "givenName": "C.", 
        "id": "sg:person.0704007157.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704007157.07"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Greco", 
        "givenName": "A.", 
        "id": "sg:person.0752024056.46", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752024056.46"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Heller", 
        "givenName": "M.", 
        "id": "sg:person.01172475256.99", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172475256.99"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Gasteiger", 
        "givenName": "E.", 
        "id": "sg:person.01121116474.21", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121116474.21"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Appel", 
        "givenName": "RD.", 
        "id": "sg:person.0731173720.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731173720.50"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Diaz", 
        "givenName": "JJ.", 
        "id": "sg:person.0726222156.78", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726222156.78"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Sanchez", 
        "givenName": "JC.", 
        "id": "sg:person.01326260071.22", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326260071.22"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Hochstrasser", 
        "givenName": "DF.", 
        "id": "sg:person.01316735750.96", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316735750.96"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1126/science.277.5331.1453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003267570"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/28.1.45", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004742321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/29.1.11", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004816721"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150170516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004960085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150170516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004960085"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(79)90400-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007160302"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.190337797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010385389"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/227680a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010419937", 
          "https://doi.org/10.1038/227680a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1290071010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010712618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1290071010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010712618"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1290080916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011532884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1290080916", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011532884"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1016/s1044-0305(98)00145-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012399800", 
          "https://doi.org/10.1016/s1044-0305(98)00145-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/oms.1210281220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012500271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/oms.1210281220", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012500271"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.11.5011", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015214312"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.93.25.14440", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015989129"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(85)90033-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016956775"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.287.5461.2185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019737566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1290091115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019983927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1290091115", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019983927"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abio.1993.1514", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020885791"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200220605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021130881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/bms.1200220605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021130881"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1290070114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023467528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.1290070114", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023467528"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0003-2697(89)90736-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023606566"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/13690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029022565", 
          "https://doi.org/10.1038/13690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/13690", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029022565", 
          "https://doi.org/10.1038/13690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1097-0231(20000715)14:13<1094::aid-rcm994>3.0.co;2-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029434418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0960-9822(93)90195-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039172973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35057062", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042854081", 
          "https://doi.org/10.1038/35057062"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/rcm.616", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042901644"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1522-2683(20000601)21:11<2105::aid-elps2105>3.0.co;2-m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046532512"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bbrc.1993.2009", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048771502"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pro.5560030822", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051317137"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150170509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052536728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/elps.1150170509", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052536728"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00109a007", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054972457"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac00109a015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054972465"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9805605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055075443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9805605", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055075443"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9810516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055075697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac9810516", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055075697"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac990448m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055076922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac990448m", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055076922"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac991363o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055077599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ac991363o", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055077599"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi9521304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055210935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi9521304", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055210935"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja00067a054", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055703861"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.7542800", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062647490"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "Genome sequencing projects produce large amounts of information that could be translated into potential protein sequences. Such amounts of material continuously increase protein database sizes. At present, 15 times more protein sequences are available in the SWISS-PROT and TrEMBL databases than 8 years ago in SWISS-PROT. One of the methods of choice for protein identification makes use of specific endoproteolytic cleavage followed by the MALDI-MS analysis of the digested product. Since 1993, when this technique was first demonstrated, the conditions required for a correct identification have changed dramatically. Whilst 4\u20135 peptides with an accuracy of 2\u20133 Da were sufficient for a correct identification in 1993, 10\u201313 peptides with less than 60 ppm mass error are now required for Human and E. coli proteins. This evolution is directly related to the continuous increase of protein database sizes, which causes an increase of the number of false positive matches in identification results. Utilisation of an information complement deduced from the primary protein sequence in the process of identification by peptide mass fingerprints can help to increase confidence in the identification results. In this article, we propose the exchange of labile hydrogen atoms with deuterium atoms. The exchange reaction with optimised techniques has shown an average 95% of hydrogen/deuterium exchange on tryptic peptides. This level of exchange was sufficient to single out one or more peptides from a list of potential candidate proteins due to the dependence of hydrogen/deuterium exchange on the peptide primary structure. This technique also has clear advantages in the identification of small proteins where direct protein identification is impaired by the limited number of endoproteolytic peptides. Then, primary sequence information obtained with this technique could help to identify proteins with high confidence without any expensive tandem mass spectrometer instruments.", 
    "editor": [
      {
        "familyName": "Bienvenut", 
        "givenName": "Willy Vincent", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/1-4020-3319-2_6", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "1-4020-3318-4"
      ], 
      "name": "Acceleration and Improvement of Protein Identification by Mass Spectrometry", 
      "type": "Book"
    }, 
    "name": "Improvements in the Peptide Mass Fingerprint Protein Identification", 
    "pagination": "189-207", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/1-4020-3319-2_6"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "2d011473d5eefca6123a04ec25d9dc6b05ef78106865a8ee7369019aac4b507b"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1009447389"
        ]
      }
    ], 
    "publisher": {
      "location": "Berlin/Heidelberg", 
      "name": "Springer-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/1-4020-3319-2_6", 
      "https://app.dimensions.ai/details/publication/pub.1009447389"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000248.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/1-4020-3319-2_6"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3319-2_6'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3319-2_6'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3319-2_6'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/1-4020-3319-2_6'


 

This table displays all metadata directly associated to this object as RDF triples.

226 TRIPLES      23 PREDICATES      65 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/1-4020-3319-2_6 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author Ncfb73cf98ed642f4af7e4c8ecfb6d77f
4 schema:citation sg:pub.10.1016/s1044-0305(98)00145-7
5 sg:pub.10.1038/13690
6 sg:pub.10.1038/227680a0
7 sg:pub.10.1038/35057062
8 https://doi.org/10.1002/1097-0231(20000715)14:13<1094::aid-rcm994>3.0.co;2-5
9 https://doi.org/10.1002/1522-2683(20000601)21:11<2105::aid-elps2105>3.0.co;2-m
10 https://doi.org/10.1002/bms.1200220605
11 https://doi.org/10.1002/elps.1150170509
12 https://doi.org/10.1002/elps.1150170516
13 https://doi.org/10.1002/oms.1210281220
14 https://doi.org/10.1002/pro.5560030822
15 https://doi.org/10.1002/rcm.1290070114
16 https://doi.org/10.1002/rcm.1290071010
17 https://doi.org/10.1002/rcm.1290080916
18 https://doi.org/10.1002/rcm.1290091115
19 https://doi.org/10.1002/rcm.616
20 https://doi.org/10.1006/abio.1993.1514
21 https://doi.org/10.1006/bbrc.1993.2009
22 https://doi.org/10.1016/0003-2697(85)90033-8
23 https://doi.org/10.1016/0003-2697(89)90736-7
24 https://doi.org/10.1016/0022-2836(79)90400-5
25 https://doi.org/10.1016/0960-9822(93)90195-t
26 https://doi.org/10.1021/ac00109a007
27 https://doi.org/10.1021/ac00109a015
28 https://doi.org/10.1021/ac9805605
29 https://doi.org/10.1021/ac9810516
30 https://doi.org/10.1021/ac990448m
31 https://doi.org/10.1021/ac991363o
32 https://doi.org/10.1021/bi9521304
33 https://doi.org/10.1021/ja00067a054
34 https://doi.org/10.1073/pnas.190337797
35 https://doi.org/10.1073/pnas.90.11.5011
36 https://doi.org/10.1073/pnas.93.25.14440
37 https://doi.org/10.1093/nar/28.1.45
38 https://doi.org/10.1093/nar/29.1.11
39 https://doi.org/10.1126/science.277.5331.1453
40 https://doi.org/10.1126/science.287.5461.2185
41 https://doi.org/10.1126/science.7542800
42 schema:datePublished 2005
43 schema:datePublishedReg 2005-01-01
44 schema:description Genome sequencing projects produce large amounts of information that could be translated into potential protein sequences. Such amounts of material continuously increase protein database sizes. At present, 15 times more protein sequences are available in the SWISS-PROT and TrEMBL databases than 8 years ago in SWISS-PROT. One of the methods of choice for protein identification makes use of specific endoproteolytic cleavage followed by the MALDI-MS analysis of the digested product. Since 1993, when this technique was first demonstrated, the conditions required for a correct identification have changed dramatically. Whilst 4–5 peptides with an accuracy of 2–3 Da were sufficient for a correct identification in 1993, 10–13 peptides with less than 60 ppm mass error are now required for Human and E. coli proteins. This evolution is directly related to the continuous increase of protein database sizes, which causes an increase of the number of false positive matches in identification results. Utilisation of an information complement deduced from the primary protein sequence in the process of identification by peptide mass fingerprints can help to increase confidence in the identification results. In this article, we propose the exchange of labile hydrogen atoms with deuterium atoms. The exchange reaction with optimised techniques has shown an average 95% of hydrogen/deuterium exchange on tryptic peptides. This level of exchange was sufficient to single out one or more peptides from a list of potential candidate proteins due to the dependence of hydrogen/deuterium exchange on the peptide primary structure. This technique also has clear advantages in the identification of small proteins where direct protein identification is impaired by the limited number of endoproteolytic peptides. Then, primary sequence information obtained with this technique could help to identify proteins with high confidence without any expensive tandem mass spectrometer instruments.
45 schema:editor N2b481ef094354bc3b27e572853943f72
46 schema:genre chapter
47 schema:inLanguage en
48 schema:isAccessibleForFree false
49 schema:isPartOf Nd667eef01df34b30b1b62616e5b99728
50 schema:name Improvements in the Peptide Mass Fingerprint Protein Identification
51 schema:pagination 189-207
52 schema:productId N021ae69c3a2b4cc2bc6ab8c4ec3b302b
53 N7e92919fb1a1407887f09b608d7faef2
54 Nab99e8b563684b82a0fc6b8f4e0044fd
55 schema:publisher N72ee2de47af84f3a9a588343d1ad0477
56 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009447389
57 https://doi.org/10.1007/1-4020-3319-2_6
58 schema:sdDatePublished 2019-04-15T16:15
59 schema:sdLicense https://scigraph.springernature.com/explorer/license/
60 schema:sdPublisher N4c7076d25afa4b34b4dc1df7683613a3
61 schema:url http://link.springer.com/10.1007/1-4020-3319-2_6
62 sgo:license sg:explorer/license/
63 sgo:sdDataset chapters
64 rdf:type schema:Chapter
65 N021ae69c3a2b4cc2bc6ab8c4ec3b302b schema:name doi
66 schema:value 10.1007/1-4020-3319-2_6
67 rdf:type schema:PropertyValue
68 N0da7d53c908c4af2b78eb2760f90a5ab schema:familyName Bienvenut
69 schema:givenName Willy Vincent
70 rdf:type schema:Person
71 N2b481ef094354bc3b27e572853943f72 rdf:first N0da7d53c908c4af2b78eb2760f90a5ab
72 rdf:rest rdf:nil
73 N408884bdc29e4491a1aa3e90ecdeaa32 rdf:first sg:person.0752024056.46
74 rdf:rest Nb1ea4f23de864e3a8059f226dfdaf0a7
75 N4c7076d25afa4b34b4dc1df7683613a3 schema:name Springer Nature - SN SciGraph project
76 rdf:type schema:Organization
77 N510bc99244b74d75b75c7079ad9dc714 rdf:first sg:person.01316735750.96
78 rdf:rest rdf:nil
79 N58058acffe2740fbb334fb6dd86a50bf rdf:first sg:person.01121116474.21
80 rdf:rest N6f5d5133ff8544b9afc4e83e45277992
81 N6f5d5133ff8544b9afc4e83e45277992 rdf:first sg:person.0731173720.50
82 rdf:rest N93856b21587c4e7aab9294f0b412a838
83 N72ee2de47af84f3a9a588343d1ad0477 schema:location Berlin/Heidelberg
84 schema:name Springer-Verlag
85 rdf:type schema:Organisation
86 N7b6af39f50b541bfb67ace152e056bd9 rdf:first sg:person.0704007157.07
87 rdf:rest N408884bdc29e4491a1aa3e90ecdeaa32
88 N7e92919fb1a1407887f09b608d7faef2 schema:name dimensions_id
89 schema:value pub.1009447389
90 rdf:type schema:PropertyValue
91 N93856b21587c4e7aab9294f0b412a838 rdf:first sg:person.0726222156.78
92 rdf:rest Nd680332e9c0948ac8cdf6a9e3a52c63e
93 Nab99e8b563684b82a0fc6b8f4e0044fd schema:name readcube_id
94 schema:value 2d011473d5eefca6123a04ec25d9dc6b05ef78106865a8ee7369019aac4b507b
95 rdf:type schema:PropertyValue
96 Nb1ea4f23de864e3a8059f226dfdaf0a7 rdf:first sg:person.01172475256.99
97 rdf:rest N58058acffe2740fbb334fb6dd86a50bf
98 Ncfb73cf98ed642f4af7e4c8ecfb6d77f rdf:first sg:person.012412514755.12
99 rdf:rest N7b6af39f50b541bfb67ace152e056bd9
100 Nd667eef01df34b30b1b62616e5b99728 schema:isbn 1-4020-3318-4
101 schema:name Acceleration and Improvement of Protein Identification by Mass Spectrometry
102 rdf:type schema:Book
103 Nd680332e9c0948ac8cdf6a9e3a52c63e rdf:first sg:person.01326260071.22
104 rdf:rest N510bc99244b74d75b75c7079ad9dc714
105 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
106 schema:name Biological Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
109 schema:name Genetics
110 rdf:type schema:DefinedTerm
111 sg:person.01121116474.21 schema:familyName Gasteiger
112 schema:givenName E.
113 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01121116474.21
114 rdf:type schema:Person
115 sg:person.01172475256.99 schema:familyName Heller
116 schema:givenName M.
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01172475256.99
118 rdf:type schema:Person
119 sg:person.012412514755.12 schema:familyName Bienvenut
120 schema:givenName WV.
121 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012412514755.12
122 rdf:type schema:Person
123 sg:person.01316735750.96 schema:familyName Hochstrasser
124 schema:givenName DF.
125 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316735750.96
126 rdf:type schema:Person
127 sg:person.01326260071.22 schema:familyName Sanchez
128 schema:givenName JC.
129 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01326260071.22
130 rdf:type schema:Person
131 sg:person.0704007157.07 schema:familyName Hoogland
132 schema:givenName C.
133 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0704007157.07
134 rdf:type schema:Person
135 sg:person.0726222156.78 schema:familyName Diaz
136 schema:givenName JJ.
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0726222156.78
138 rdf:type schema:Person
139 sg:person.0731173720.50 schema:familyName Appel
140 schema:givenName RD.
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0731173720.50
142 rdf:type schema:Person
143 sg:person.0752024056.46 schema:familyName Greco
144 schema:givenName A.
145 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0752024056.46
146 rdf:type schema:Person
147 sg:pub.10.1016/s1044-0305(98)00145-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012399800
148 https://doi.org/10.1016/s1044-0305(98)00145-7
149 rdf:type schema:CreativeWork
150 sg:pub.10.1038/13690 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029022565
151 https://doi.org/10.1038/13690
152 rdf:type schema:CreativeWork
153 sg:pub.10.1038/227680a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010419937
154 https://doi.org/10.1038/227680a0
155 rdf:type schema:CreativeWork
156 sg:pub.10.1038/35057062 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042854081
157 https://doi.org/10.1038/35057062
158 rdf:type schema:CreativeWork
159 https://doi.org/10.1002/1097-0231(20000715)14:13<1094::aid-rcm994>3.0.co;2-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029434418
160 rdf:type schema:CreativeWork
161 https://doi.org/10.1002/1522-2683(20000601)21:11<2105::aid-elps2105>3.0.co;2-m schema:sameAs https://app.dimensions.ai/details/publication/pub.1046532512
162 rdf:type schema:CreativeWork
163 https://doi.org/10.1002/bms.1200220605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021130881
164 rdf:type schema:CreativeWork
165 https://doi.org/10.1002/elps.1150170509 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052536728
166 rdf:type schema:CreativeWork
167 https://doi.org/10.1002/elps.1150170516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004960085
168 rdf:type schema:CreativeWork
169 https://doi.org/10.1002/oms.1210281220 schema:sameAs https://app.dimensions.ai/details/publication/pub.1012500271
170 rdf:type schema:CreativeWork
171 https://doi.org/10.1002/pro.5560030822 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051317137
172 rdf:type schema:CreativeWork
173 https://doi.org/10.1002/rcm.1290070114 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023467528
174 rdf:type schema:CreativeWork
175 https://doi.org/10.1002/rcm.1290071010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010712618
176 rdf:type schema:CreativeWork
177 https://doi.org/10.1002/rcm.1290080916 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011532884
178 rdf:type schema:CreativeWork
179 https://doi.org/10.1002/rcm.1290091115 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019983927
180 rdf:type schema:CreativeWork
181 https://doi.org/10.1002/rcm.616 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042901644
182 rdf:type schema:CreativeWork
183 https://doi.org/10.1006/abio.1993.1514 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020885791
184 rdf:type schema:CreativeWork
185 https://doi.org/10.1006/bbrc.1993.2009 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048771502
186 rdf:type schema:CreativeWork
187 https://doi.org/10.1016/0003-2697(85)90033-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016956775
188 rdf:type schema:CreativeWork
189 https://doi.org/10.1016/0003-2697(89)90736-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023606566
190 rdf:type schema:CreativeWork
191 https://doi.org/10.1016/0022-2836(79)90400-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007160302
192 rdf:type schema:CreativeWork
193 https://doi.org/10.1016/0960-9822(93)90195-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1039172973
194 rdf:type schema:CreativeWork
195 https://doi.org/10.1021/ac00109a007 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054972457
196 rdf:type schema:CreativeWork
197 https://doi.org/10.1021/ac00109a015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054972465
198 rdf:type schema:CreativeWork
199 https://doi.org/10.1021/ac9805605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055075443
200 rdf:type schema:CreativeWork
201 https://doi.org/10.1021/ac9810516 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055075697
202 rdf:type schema:CreativeWork
203 https://doi.org/10.1021/ac990448m schema:sameAs https://app.dimensions.ai/details/publication/pub.1055076922
204 rdf:type schema:CreativeWork
205 https://doi.org/10.1021/ac991363o schema:sameAs https://app.dimensions.ai/details/publication/pub.1055077599
206 rdf:type schema:CreativeWork
207 https://doi.org/10.1021/bi9521304 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055210935
208 rdf:type schema:CreativeWork
209 https://doi.org/10.1021/ja00067a054 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055703861
210 rdf:type schema:CreativeWork
211 https://doi.org/10.1073/pnas.190337797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010385389
212 rdf:type schema:CreativeWork
213 https://doi.org/10.1073/pnas.90.11.5011 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015214312
214 rdf:type schema:CreativeWork
215 https://doi.org/10.1073/pnas.93.25.14440 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015989129
216 rdf:type schema:CreativeWork
217 https://doi.org/10.1093/nar/28.1.45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004742321
218 rdf:type schema:CreativeWork
219 https://doi.org/10.1093/nar/29.1.11 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004816721
220 rdf:type schema:CreativeWork
221 https://doi.org/10.1126/science.277.5331.1453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003267570
222 rdf:type schema:CreativeWork
223 https://doi.org/10.1126/science.287.5461.2185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019737566
224 rdf:type schema:CreativeWork
225 https://doi.org/10.1126/science.7542800 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062647490
226 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...