Uncertainty Management for Environmental Risk Assessment Using Geostatistical Simulations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004

AUTHORS

J. Deraisme , O. Jaquet , N. Jeannée

ABSTRACT

Geostatistical simulations are very popular in the petroleum and mining industries as they address some issues where “kriging-like” techniques fail. The multiple capabilities of geostatistical simulations have also proven to be of major interest to the environmental sciences. Non-linear estimation techniques such as disjunctive kriging, uniform conditioning or conditional expectation may be convenient for solving problems like the estimation of the probability of exceeding thresholds and contaminated volumes. But if these problems involve multiple point statistics or non-stationary cases, these techniques are not sufficient. Besides, in many situations, the multivariate aspect of the problem cannot be ignored and co simulation methods turn out to be the most efficient solution. The powerful contribution of geostatistical simulation methods to environmental issues is illustrated with applications in the domains of air pollution, soil contamination and hydrogeological modelling. The first example shows how simulations can quantify the risk of exposure of a city’s population to air polluted with NO2. The second example deals with soil contamination with poly-cyclic aromatic hydrocarbons at former industrial sites. The last example is taken from a national program for the storage of nuclear waste. When faced with the complexity of today’s environmental risk assessment issues, optimal decision making requires knowledge of the prevailing uncertainties. Geostatistical simulations provide an assessment framework as well as solutions to achieve this goal. More... »

PAGES

139-150

References to SciGraph publications

Book

TITLE

geoENV IV — Geostatistics for Environmental Applications

ISBN

1-4020-2007-4

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/1-4020-2115-1_12

DOI

http://dx.doi.org/10.1007/1-4020-2115-1_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1027418591


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Geovariances, 49bis av Franklin Roosevelt, 77212\u00a0Avon Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deraisme", 
        "givenName": "J.", 
        "id": "sg:person.07720742531.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07720742531.26"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "AF Consult (Switzerland)", 
          "id": "https://www.grid.ac/institutes/grid.424186.d", 
          "name": [
            "Colenco Power Engineering Ltd, Mellingstr, 207,5405\u00a0Baden, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jaquet", 
        "givenName": "O.", 
        "id": "sg:person.012540077057.93", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012540077057.93"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "name": [
            "Geovariances, 49bis av Franklin Roosevelt, 77212\u00a0Avon Cedex, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Jeann\u00e9e", 
        "givenName": "N.", 
        "id": "sg:person.01353516253.10", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353516253.10"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-3-662-04808-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006669272", 
          "https://doi.org/10.1007/978-3-662-04808-5"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-3-662-04808-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006669272", 
          "https://doi.org/10.1007/978-3-662-04808-5"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2004", 
    "datePublishedReg": "2004-01-01", 
    "description": "Geostatistical simulations are very popular in the petroleum and mining industries as they address some issues where \u201ckriging-like\u201d techniques fail. The multiple capabilities of geostatistical simulations have also proven to be of major interest to the environmental sciences. Non-linear estimation techniques such as disjunctive kriging, uniform conditioning or conditional expectation may be convenient for solving problems like the estimation of the probability of exceeding thresholds and contaminated volumes. But if these problems involve multiple point statistics or non-stationary cases, these techniques are not sufficient. Besides, in many situations, the multivariate aspect of the problem cannot be ignored and co simulation methods turn out to be the most efficient solution. The powerful contribution of geostatistical simulation methods to environmental issues is illustrated with applications in the domains of air pollution, soil contamination and hydrogeological modelling. The first example shows how simulations can quantify the risk of exposure of a city\u2019s population to air polluted with NO2. The second example deals with soil contamination with poly-cyclic aromatic hydrocarbons at former industrial sites. The last example is taken from a national program for the storage of nuclear waste. When faced with the complexity of today\u2019s environmental risk assessment issues, optimal decision making requires knowledge of the prevailing uncertainties. Geostatistical simulations provide an assessment framework as well as solutions to achieve this goal.", 
    "editor": [
      {
        "familyName": "Sanchez-Vila", 
        "givenName": "Xavier", 
        "type": "Person"
      }, 
      {
        "familyName": "Carrera", 
        "givenName": "Jesus", 
        "type": "Person"
      }, 
      {
        "familyName": "G\u00f3mez-Hern\u00e1ndez", 
        "givenName": "Jos\u00e9 Jaime", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/1-4020-2115-1_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "1-4020-2007-4"
      ], 
      "name": "geoENV IV \u2014 Geostatistics for Environmental Applications", 
      "type": "Book"
    }, 
    "name": "Uncertainty Management for Environmental Risk Assessment Using Geostatistical Simulations", 
    "pagination": "139-150", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/1-4020-2115-1_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "829cea946e246b971a8a06a52f9ce8449c5cda2dce519b86e5fb30d57002fdff"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1027418591"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Kluwer Academic Publishers", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/1-4020-2115-1_12", 
      "https://app.dimensions.ai/details/publication/pub.1027418591"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:53", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8687_00000047.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/1-4020-2115-1_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/1-4020-2115-1_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/1-4020-2115-1_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/1-4020-2115-1_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/1-4020-2115-1_12'


 

This table displays all metadata directly associated to this object as RDF triples.

96 TRIPLES      23 PREDICATES      28 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/1-4020-2115-1_12 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author N67565a7df17e4075955632ac4ae4db9f
4 schema:citation sg:pub.10.1007/978-3-662-04808-5
5 schema:datePublished 2004
6 schema:datePublishedReg 2004-01-01
7 schema:description Geostatistical simulations are very popular in the petroleum and mining industries as they address some issues where “kriging-like” techniques fail. The multiple capabilities of geostatistical simulations have also proven to be of major interest to the environmental sciences. Non-linear estimation techniques such as disjunctive kriging, uniform conditioning or conditional expectation may be convenient for solving problems like the estimation of the probability of exceeding thresholds and contaminated volumes. But if these problems involve multiple point statistics or non-stationary cases, these techniques are not sufficient. Besides, in many situations, the multivariate aspect of the problem cannot be ignored and co simulation methods turn out to be the most efficient solution. The powerful contribution of geostatistical simulation methods to environmental issues is illustrated with applications in the domains of air pollution, soil contamination and hydrogeological modelling. The first example shows how simulations can quantify the risk of exposure of a city’s population to air polluted with NO2. The second example deals with soil contamination with poly-cyclic aromatic hydrocarbons at former industrial sites. The last example is taken from a national program for the storage of nuclear waste. When faced with the complexity of today’s environmental risk assessment issues, optimal decision making requires knowledge of the prevailing uncertainties. Geostatistical simulations provide an assessment framework as well as solutions to achieve this goal.
8 schema:editor Nf20552420ce64b4cb42a865a5ef5a684
9 schema:genre chapter
10 schema:inLanguage en
11 schema:isAccessibleForFree false
12 schema:isPartOf Nf73a3dbbc01d47e19a71310502e88b30
13 schema:name Uncertainty Management for Environmental Risk Assessment Using Geostatistical Simulations
14 schema:pagination 139-150
15 schema:productId N00694e21ec714a8186135f3fa9748020
16 N2204358c981a4b84ade10b81f57a7337
17 N6bcc5e28f3bf4eebbce3eb7a84a0751c
18 schema:publisher N558ed6881aa94430800ea84731089ece
19 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027418591
20 https://doi.org/10.1007/1-4020-2115-1_12
21 schema:sdDatePublished 2019-04-15T19:53
22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
23 schema:sdPublisher N5d06e6803cd84202b4be4b4e696d36ac
24 schema:url http://link.springer.com/10.1007/1-4020-2115-1_12
25 sgo:license sg:explorer/license/
26 sgo:sdDataset chapters
27 rdf:type schema:Chapter
28 N00694e21ec714a8186135f3fa9748020 schema:name dimensions_id
29 schema:value pub.1027418591
30 rdf:type schema:PropertyValue
31 N1a872696716542ef8db2420b6604c696 schema:familyName Carrera
32 schema:givenName Jesus
33 rdf:type schema:Person
34 N2204358c981a4b84ade10b81f57a7337 schema:name readcube_id
35 schema:value 829cea946e246b971a8a06a52f9ce8449c5cda2dce519b86e5fb30d57002fdff
36 rdf:type schema:PropertyValue
37 N4bdcadf4a94b4f0f81e141a0bd322251 schema:name Geovariances, 49bis av Franklin Roosevelt, 77212 Avon Cedex, France
38 rdf:type schema:Organization
39 N558ed6881aa94430800ea84731089ece schema:location Dordrecht
40 schema:name Kluwer Academic Publishers
41 rdf:type schema:Organisation
42 N5d06e6803cd84202b4be4b4e696d36ac schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N624c68e229b64e448ff8dd5f9d954311 schema:familyName Sanchez-Vila
45 schema:givenName Xavier
46 rdf:type schema:Person
47 N67565a7df17e4075955632ac4ae4db9f rdf:first sg:person.07720742531.26
48 rdf:rest Nb0f86a3e13844f32bf535c3518f883ba
49 N6bcc5e28f3bf4eebbce3eb7a84a0751c schema:name doi
50 schema:value 10.1007/1-4020-2115-1_12
51 rdf:type schema:PropertyValue
52 N8a052cacc03c4b78b7838f06d1288542 rdf:first Nfeb346d034cd460d9687e0ce9c3e421e
53 rdf:rest rdf:nil
54 N8d1bc140e5d24ecca8f204e8abc93115 rdf:first sg:person.01353516253.10
55 rdf:rest rdf:nil
56 Na260b4260bfe4149a17eec5594133b33 schema:name Geovariances, 49bis av Franklin Roosevelt, 77212 Avon Cedex, France
57 rdf:type schema:Organization
58 Naaf1c1cd75c44227ab5082481bb205f6 rdf:first N1a872696716542ef8db2420b6604c696
59 rdf:rest N8a052cacc03c4b78b7838f06d1288542
60 Nb0f86a3e13844f32bf535c3518f883ba rdf:first sg:person.012540077057.93
61 rdf:rest N8d1bc140e5d24ecca8f204e8abc93115
62 Nf20552420ce64b4cb42a865a5ef5a684 rdf:first N624c68e229b64e448ff8dd5f9d954311
63 rdf:rest Naaf1c1cd75c44227ab5082481bb205f6
64 Nf73a3dbbc01d47e19a71310502e88b30 schema:isbn 1-4020-2007-4
65 schema:name geoENV IV — Geostatistics for Environmental Applications
66 rdf:type schema:Book
67 Nfeb346d034cd460d9687e0ce9c3e421e schema:familyName Gómez-Hernández
68 schema:givenName José Jaime
69 rdf:type schema:Person
70 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
71 schema:name Mathematical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
74 schema:name Statistics
75 rdf:type schema:DefinedTerm
76 sg:person.012540077057.93 schema:affiliation https://www.grid.ac/institutes/grid.424186.d
77 schema:familyName Jaquet
78 schema:givenName O.
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012540077057.93
80 rdf:type schema:Person
81 sg:person.01353516253.10 schema:affiliation N4bdcadf4a94b4f0f81e141a0bd322251
82 schema:familyName Jeannée
83 schema:givenName N.
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01353516253.10
85 rdf:type schema:Person
86 sg:person.07720742531.26 schema:affiliation Na260b4260bfe4149a17eec5594133b33
87 schema:familyName Deraisme
88 schema:givenName J.
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07720742531.26
90 rdf:type schema:Person
91 sg:pub.10.1007/978-3-662-04808-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006669272
92 https://doi.org/10.1007/978-3-662-04808-5
93 rdf:type schema:CreativeWork
94 https://www.grid.ac/institutes/grid.424186.d schema:alternateName AF Consult (Switzerland)
95 schema:name Colenco Power Engineering Ltd, Mellingstr, 207,5405 Baden, Switzerland
96 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...