Seiberg-Witten Theory and Random Partitions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007

AUTHORS

Nikita A. Nekrasov , Andrei Okounkov

ABSTRACT

We study \( \mathcal{N} = 2 \) supersymmetric four-dimensional gauge theories, in a certain 525-02 = 2 supergravity background, called theΩ-background. The partition function of the theory in the Ω-background can be calculated explicitly. We investigate various representations for this partition function: a statistical sum over random partitions, a partition function of the ensemble of random curves, and a free fermion correlator. These representations allow us to derive rigorously the Seiberg-Witten geometry, the curves, the differentials, and the prepotential. More... »

PAGES

525-596

Book

TITLE

The Unity of Mathematics

ISBN

978-0-8176-4076-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15

DOI

http://dx.doi.org/10.1007/0-8176-4467-9_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035404476


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut des Hautes \u00c9tudes Scientifiques", 
          "id": "https://www.grid.ac/institutes/grid.425258.c", 
          "name": [
            "Institut des Hautes \u00c9tudes Scientifiques, 35 Route de Chartres, F-91440\u00a0Bures-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nekrasov", 
        "givenName": "Nikita A.", 
        "id": "sg:person.014415552056.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014415552056.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Princeton University", 
          "id": "https://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Mathematics, Princeton University, Princeton, NJ\u00a008544, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okounkov", 
        "givenName": "Andrei", 
        "id": "sg:person.01235025714.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235025714.02"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0550-3213(97)00290-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000060205"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01223371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002704291", 
          "https://doi.org/10.1007/bf01223371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf01223371", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002704291", 
          "https://doi.org/10.1007/bf01223371"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0393-0440(90)90023-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003367252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0393-0440(90)90023-v", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003367252"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(88)91265-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005513284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(88)91265-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005513284"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00414638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007085606", 
          "https://doi.org/10.1007/bf00414638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00414638", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007085606", 
          "https://doi.org/10.1007/bf00414638"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0001-8708(77)90030-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019830529"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90374-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027639491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0550-3213(84)90374-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027639491"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(95)00723-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035810377"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(99)00393-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039395776"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(75)90163-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040404900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0370-2693(75)90163-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040404900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/pl00001398", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041629930", 
          "https://doi.org/10.1007/pl00001398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0550-3213(98)00315-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053552823"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1063/1.1665604", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1057743684"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2977/prims/1195182017", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070935125"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "We study \\( \\mathcal{N} = 2 \\) supersymmetric four-dimensional gauge theories, in a certain 525-02 = 2 supergravity background, called the\u03a9-background. The partition function of the theory in the \u03a9-background can be calculated explicitly. We investigate various representations for this partition function: a statistical sum over random partitions, a partition function of the ensemble of random curves, and a free fermion correlator. These representations allow us to derive rigorously the Seiberg-Witten geometry, the curves, the differentials, and the prepotential.", 
    "editor": [
      {
        "familyName": "Etingof", 
        "givenName": "Pavel", 
        "type": "Person"
      }, 
      {
        "familyName": "Retakh", 
        "givenName": "Vladimir", 
        "type": "Person"
      }, 
      {
        "familyName": "Singer", 
        "givenName": "I. M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-8176-4467-9_15", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-0-8176-4076-7"
      ], 
      "name": "The Unity of Mathematics", 
      "type": "Book"
    }, 
    "name": "Seiberg-Witten Theory and Random Partitions", 
    "pagination": "525-596", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-8176-4467-9_15"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a8a693a3ece8472abe6bb3b3ea18b1975a310db38a90bc705c31931d88edc38c"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035404476"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Birkh\u00e4user Boston", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-8176-4467-9_15", 
      "https://app.dimensions.ai/details/publication/pub.1035404476"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T12:33", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8663_00000265.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/0-8176-4467-9_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'


 

This table displays all metadata directly associated to this object as RDF triples.

129 TRIPLES      23 PREDICATES      41 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-8176-4467-9_15 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nd1b8f65ad92c4196b2a781c5fec8a4b6
4 schema:citation sg:pub.10.1007/bf00414638
5 sg:pub.10.1007/bf01223371
6 sg:pub.10.1007/pl00001398
7 https://doi.org/10.1016/0001-8708(77)90030-5
8 https://doi.org/10.1016/0370-2693(75)90163-x
9 https://doi.org/10.1016/0370-2693(88)91265-8
10 https://doi.org/10.1016/0370-2693(95)00723-x
11 https://doi.org/10.1016/0393-0440(90)90023-v
12 https://doi.org/10.1016/0550-3213(84)90374-2
13 https://doi.org/10.1016/s0550-3213(97)00290-3
14 https://doi.org/10.1016/s0550-3213(98)00315-0
15 https://doi.org/10.1016/s0550-3213(99)00393-4
16 https://doi.org/10.1063/1.1665604
17 https://doi.org/10.2977/prims/1195182017
18 schema:datePublished 2007
19 schema:datePublishedReg 2007-01-01
20 schema:description We study \( \mathcal{N} = 2 \) supersymmetric four-dimensional gauge theories, in a certain 525-02 = 2 supergravity background, called theΩ-background. The partition function of the theory in the Ω-background can be calculated explicitly. We investigate various representations for this partition function: a statistical sum over random partitions, a partition function of the ensemble of random curves, and a free fermion correlator. These representations allow us to derive rigorously the Seiberg-Witten geometry, the curves, the differentials, and the prepotential.
21 schema:editor Ne3f1199d1e8343d09ccda26ee74a63bc
22 schema:genre chapter
23 schema:inLanguage en
24 schema:isAccessibleForFree true
25 schema:isPartOf Ndef714f992854a97bef7cf2f855db0dd
26 schema:name Seiberg-Witten Theory and Random Partitions
27 schema:pagination 525-596
28 schema:productId N23f4514da9154384a69a5d8c7082e4f6
29 N7bf0cbfd7a0449349a149a766472d77e
30 Nd9c7df98b0ce4ae6ae84feb421fa6afd
31 schema:publisher N38e33adec7414968b36c755526d83ef0
32 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035404476
33 https://doi.org/10.1007/0-8176-4467-9_15
34 schema:sdDatePublished 2019-04-15T12:33
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N3ba1eb216bc54f2f8f897e946de5bfa6
37 schema:url http://link.springer.com/10.1007/0-8176-4467-9_15
38 sgo:license sg:explorer/license/
39 sgo:sdDataset chapters
40 rdf:type schema:Chapter
41 N04663cda30d6464a95288d0e78b5611b schema:familyName Etingof
42 schema:givenName Pavel
43 rdf:type schema:Person
44 N20067736bea54c30b5a77245306561a1 rdf:first Ne6ca70132724482686d82859b5771253
45 rdf:rest rdf:nil
46 N23f4514da9154384a69a5d8c7082e4f6 schema:name dimensions_id
47 schema:value pub.1035404476
48 rdf:type schema:PropertyValue
49 N38e33adec7414968b36c755526d83ef0 schema:location Boston, MA
50 schema:name Birkhäuser Boston
51 rdf:type schema:Organisation
52 N3ba1eb216bc54f2f8f897e946de5bfa6 schema:name Springer Nature - SN SciGraph project
53 rdf:type schema:Organization
54 N69bde105acbb46059f8753be27c87eda schema:familyName Retakh
55 schema:givenName Vladimir
56 rdf:type schema:Person
57 N7bf0cbfd7a0449349a149a766472d77e schema:name doi
58 schema:value 10.1007/0-8176-4467-9_15
59 rdf:type schema:PropertyValue
60 N7dd6c8b37e1b48489dc360c9b1bfe1cd rdf:first sg:person.01235025714.02
61 rdf:rest rdf:nil
62 N968c9d327ec34ffba381a953c6bd8b18 rdf:first N69bde105acbb46059f8753be27c87eda
63 rdf:rest N20067736bea54c30b5a77245306561a1
64 Nd1b8f65ad92c4196b2a781c5fec8a4b6 rdf:first sg:person.014415552056.90
65 rdf:rest N7dd6c8b37e1b48489dc360c9b1bfe1cd
66 Nd9c7df98b0ce4ae6ae84feb421fa6afd schema:name readcube_id
67 schema:value a8a693a3ece8472abe6bb3b3ea18b1975a310db38a90bc705c31931d88edc38c
68 rdf:type schema:PropertyValue
69 Ndef714f992854a97bef7cf2f855db0dd schema:isbn 978-0-8176-4076-7
70 schema:name The Unity of Mathematics
71 rdf:type schema:Book
72 Ne3f1199d1e8343d09ccda26ee74a63bc rdf:first N04663cda30d6464a95288d0e78b5611b
73 rdf:rest N968c9d327ec34ffba381a953c6bd8b18
74 Ne6ca70132724482686d82859b5771253 schema:familyName Singer
75 schema:givenName I. M.
76 rdf:type schema:Person
77 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
78 schema:name Mathematical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
81 schema:name Pure Mathematics
82 rdf:type schema:DefinedTerm
83 sg:person.01235025714.02 schema:affiliation https://www.grid.ac/institutes/grid.16750.35
84 schema:familyName Okounkov
85 schema:givenName Andrei
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235025714.02
87 rdf:type schema:Person
88 sg:person.014415552056.90 schema:affiliation https://www.grid.ac/institutes/grid.425258.c
89 schema:familyName Nekrasov
90 schema:givenName Nikita A.
91 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014415552056.90
92 rdf:type schema:Person
93 sg:pub.10.1007/bf00414638 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007085606
94 https://doi.org/10.1007/bf00414638
95 rdf:type schema:CreativeWork
96 sg:pub.10.1007/bf01223371 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002704291
97 https://doi.org/10.1007/bf01223371
98 rdf:type schema:CreativeWork
99 sg:pub.10.1007/pl00001398 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041629930
100 https://doi.org/10.1007/pl00001398
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1016/0001-8708(77)90030-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019830529
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1016/0370-2693(75)90163-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1040404900
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1016/0370-2693(88)91265-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1005513284
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1016/0370-2693(95)00723-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1035810377
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1016/0393-0440(90)90023-v schema:sameAs https://app.dimensions.ai/details/publication/pub.1003367252
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1016/0550-3213(84)90374-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027639491
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1016/s0550-3213(97)00290-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000060205
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1016/s0550-3213(98)00315-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053552823
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1016/s0550-3213(99)00393-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039395776
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1063/1.1665604 schema:sameAs https://app.dimensions.ai/details/publication/pub.1057743684
121 rdf:type schema:CreativeWork
122 https://doi.org/10.2977/prims/1195182017 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070935125
123 rdf:type schema:CreativeWork
124 https://www.grid.ac/institutes/grid.16750.35 schema:alternateName Princeton University
125 schema:name Department of Mathematics, Princeton University, Princeton, NJ 08544, USA
126 rdf:type schema:Organization
127 https://www.grid.ac/institutes/grid.425258.c schema:alternateName Institut des Hautes Études Scientifiques
128 schema:name Institut des Hautes Études Scientifiques, 35 Route de Chartres, F-91440 Bures-sur-Yvette, France
129 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...