Seiberg-Witten Theory and Random Partitions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007-01-01

AUTHORS

Nikita A. Nekrasov , Andrei Okounkov

ABSTRACT

We study \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = 2 $$\end{document} supersymmetric four-dimensional gauge theories, in a certain 525-02 = 2 supergravity background, called theΩ-background. The partition function of the theory in the Ω-background can be calculated explicitly. We investigate various representations for this partition function: a statistical sum over random partitions, a partition function of the ensemble of random curves, and a free fermion correlator.These representations allow us to derive rigorously the Seiberg-Witten geometry, the curves, the differentials, and the prepotential.We study pure 525-03 = 2 theory, as well as the theory with matter hypermultiplets in the fundamental or adjoint representations, and the five-dimensional theory compactified on a circle. More... »

PAGES

525-596

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15

DOI

http://dx.doi.org/10.1007/0-8176-4467-9_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035404476


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut des Hautes \u00c9tudes Scientifiques, 35 Route de Chartres, F-91440, Bures-sur-Yvette, France", 
          "id": "http://www.grid.ac/institutes/grid.425258.c", 
          "name": [
            "Institut des Hautes \u00c9tudes Scientifiques, 35 Route de Chartres, F-91440, Bures-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nekrasov", 
        "givenName": "Nikita A.", 
        "id": "sg:person.014415552056.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014415552056.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Princeton University, 08544, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Mathematics, Princeton University, 08544, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okounkov", 
        "givenName": "Andrei", 
        "id": "sg:person.01235025714.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235025714.02"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "We study \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\mathcal{N} = 2\n$$\\end{document} supersymmetric four-dimensional gauge theories, in a certain 525-02 = 2 supergravity background, called the\u03a9-background. The partition function of the theory in the \u03a9-background can be calculated explicitly. We investigate various representations for this partition function: a statistical sum over random partitions, a partition function of the ensemble of random curves, and a free fermion correlator.These representations allow us to derive rigorously the Seiberg-Witten geometry, the curves, the differentials, and the prepotential.We study pure 525-03 = 2 theory, as well as the theory with matter hypermultiplets in the fundamental or adjoint representations, and the five-dimensional theory compactified on a circle.", 
    "editor": [
      {
        "familyName": "Etingof", 
        "givenName": "Pavel", 
        "type": "Person"
      }, 
      {
        "familyName": "Retakh", 
        "givenName": "Vladimir", 
        "type": "Person"
      }, 
      {
        "familyName": "Singer", 
        "givenName": "I. M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-8176-4467-9_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-0-8176-4076-7", 
        "978-0-8176-4467-3"
      ], 
      "name": "The Unity of Mathematics", 
      "type": "Book"
    }, 
    "keywords": [
      "partition function", 
      "random partitions", 
      "four-dimensional gauge theories", 
      "Seiberg-Witten geometry", 
      "Seiberg-Witten theory", 
      "five-dimensional theory", 
      "statistical sum", 
      "random curves", 
      "matter hypermultiplets", 
      "supergravity background", 
      "gauge theory", 
      "adjoint representation", 
      "fermion correlators", 
      "theory", 
      "representation", 
      "hypermultiplets", 
      "prepotential", 
      "correlator", 
      "partition", 
      "geometry", 
      "ensemble", 
      "function", 
      "sum", 
      "curves", 
      "circle", 
      "differential", 
      "background"
    ], 
    "name": "Seiberg-Witten Theory and Random Partitions", 
    "pagination": "525-596", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035404476"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-8176-4467-9_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-8176-4467-9_15", 
      "https://app.dimensions.ai/details/publication/pub.1035404476"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:52", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_434.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/0-8176-4467-9_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'


 

This table displays all metadata directly associated to this object as RDF triples.

107 TRIPLES      23 PREDICATES      52 URIs      45 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-8176-4467-9_15 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf325def2cff84ca481866e7fa9df855a
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description We study \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = 2 $$\end{document} supersymmetric four-dimensional gauge theories, in a certain 525-02 = 2 supergravity background, called theΩ-background. The partition function of the theory in the Ω-background can be calculated explicitly. We investigate various representations for this partition function: a statistical sum over random partitions, a partition function of the ensemble of random curves, and a free fermion correlator.These representations allow us to derive rigorously the Seiberg-Witten geometry, the curves, the differentials, and the prepotential.We study pure 525-03 = 2 theory, as well as the theory with matter hypermultiplets in the fundamental or adjoint representations, and the five-dimensional theory compactified on a circle.
7 schema:editor Nc5c7c831006142968fdf7002d8b277bb
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf Ned4f6caec77d40f3998b881c7eb6ea24
12 schema:keywords Seiberg-Witten geometry
13 Seiberg-Witten theory
14 adjoint representation
15 background
16 circle
17 correlator
18 curves
19 differential
20 ensemble
21 fermion correlators
22 five-dimensional theory
23 four-dimensional gauge theories
24 function
25 gauge theory
26 geometry
27 hypermultiplets
28 matter hypermultiplets
29 partition
30 partition function
31 prepotential
32 random curves
33 random partitions
34 representation
35 statistical sum
36 sum
37 supergravity background
38 theory
39 schema:name Seiberg-Witten Theory and Random Partitions
40 schema:pagination 525-596
41 schema:productId N6a590ab15f3148208369fecba1a2b3b1
42 Nbd3d951624284ac9925b0f181f6982ad
43 schema:publisher Naef3c1b05459480b9eb2f75df459cc34
44 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035404476
45 https://doi.org/10.1007/0-8176-4467-9_15
46 schema:sdDatePublished 2022-05-10T10:52
47 schema:sdLicense https://scigraph.springernature.com/explorer/license/
48 schema:sdPublisher N8298338595764067abd5e5af3167bce2
49 schema:url https://doi.org/10.1007/0-8176-4467-9_15
50 sgo:license sg:explorer/license/
51 sgo:sdDataset chapters
52 rdf:type schema:Chapter
53 N1f4b2cdc705d4af39abffefacff3696d schema:familyName Singer
54 schema:givenName I. M.
55 rdf:type schema:Person
56 N230c618b7063416cb4ecd71804d266f8 schema:familyName Retakh
57 schema:givenName Vladimir
58 rdf:type schema:Person
59 N55ab833296064b4cb3d27cf54c5b970f schema:familyName Etingof
60 schema:givenName Pavel
61 rdf:type schema:Person
62 N60e321936fd149d38c33dfd47b734283 rdf:first sg:person.01235025714.02
63 rdf:rest rdf:nil
64 N6a590ab15f3148208369fecba1a2b3b1 schema:name doi
65 schema:value 10.1007/0-8176-4467-9_15
66 rdf:type schema:PropertyValue
67 N793f0c2865b94903bc2c0f81fcacd5d6 rdf:first N1f4b2cdc705d4af39abffefacff3696d
68 rdf:rest rdf:nil
69 N8298338595764067abd5e5af3167bce2 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 Naef3c1b05459480b9eb2f75df459cc34 schema:name Springer Nature
72 rdf:type schema:Organisation
73 Nbd3d951624284ac9925b0f181f6982ad schema:name dimensions_id
74 schema:value pub.1035404476
75 rdf:type schema:PropertyValue
76 Nc186e53b25174768bc6704b332293ca4 rdf:first N230c618b7063416cb4ecd71804d266f8
77 rdf:rest N793f0c2865b94903bc2c0f81fcacd5d6
78 Nc5c7c831006142968fdf7002d8b277bb rdf:first N55ab833296064b4cb3d27cf54c5b970f
79 rdf:rest Nc186e53b25174768bc6704b332293ca4
80 Ned4f6caec77d40f3998b881c7eb6ea24 schema:isbn 978-0-8176-4076-7
81 978-0-8176-4467-3
82 schema:name The Unity of Mathematics
83 rdf:type schema:Book
84 Nf325def2cff84ca481866e7fa9df855a rdf:first sg:person.014415552056.90
85 rdf:rest N60e321936fd149d38c33dfd47b734283
86 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
87 schema:name Mathematical Sciences
88 rdf:type schema:DefinedTerm
89 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
90 schema:name Pure Mathematics
91 rdf:type schema:DefinedTerm
92 sg:person.01235025714.02 schema:affiliation grid-institutes:grid.16750.35
93 schema:familyName Okounkov
94 schema:givenName Andrei
95 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235025714.02
96 rdf:type schema:Person
97 sg:person.014415552056.90 schema:affiliation grid-institutes:grid.425258.c
98 schema:familyName Nekrasov
99 schema:givenName Nikita A.
100 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014415552056.90
101 rdf:type schema:Person
102 grid-institutes:grid.16750.35 schema:alternateName Department of Mathematics, Princeton University, 08544, Princeton, NJ, USA
103 schema:name Department of Mathematics, Princeton University, 08544, Princeton, NJ, USA
104 rdf:type schema:Organization
105 grid-institutes:grid.425258.c schema:alternateName Institut des Hautes Études Scientifiques, 35 Route de Chartres, F-91440, Bures-sur-Yvette, France
106 schema:name Institut des Hautes Études Scientifiques, 35 Route de Chartres, F-91440, Bures-sur-Yvette, France
107 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...