Seiberg-Witten Theory and Random Partitions View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2007-01-01

AUTHORS

Nikita A. Nekrasov , Andrei Okounkov

ABSTRACT

We study \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = 2 $$\end{document} supersymmetric four-dimensional gauge theories, in a certain 525-02 = 2 supergravity background, called theΩ-background. The partition function of the theory in the Ω-background can be calculated explicitly. We investigate various representations for this partition function: a statistical sum over random partitions, a partition function of the ensemble of random curves, and a free fermion correlator.These representations allow us to derive rigorously the Seiberg-Witten geometry, the curves, the differentials, and the prepotential.We study pure 525-03 = 2 theory, as well as the theory with matter hypermultiplets in the fundamental or adjoint representations, and the five-dimensional theory compactified on a circle. More... »

PAGES

525-596

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15

DOI

http://dx.doi.org/10.1007/0-8176-4467-9_15

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1035404476


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Pure Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institut des Hautes \u00c9tudes Scientifiques, 35 Route de Chartres, F-91440, Bures-sur-Yvette, France", 
          "id": "http://www.grid.ac/institutes/grid.425258.c", 
          "name": [
            "Institut des Hautes \u00c9tudes Scientifiques, 35 Route de Chartres, F-91440, Bures-sur-Yvette, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Nekrasov", 
        "givenName": "Nikita A.", 
        "id": "sg:person.014415552056.90", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014415552056.90"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Mathematics, Princeton University, 08544, Princeton, NJ, USA", 
          "id": "http://www.grid.ac/institutes/grid.16750.35", 
          "name": [
            "Department of Mathematics, Princeton University, 08544, Princeton, NJ, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Okounkov", 
        "givenName": "Andrei", 
        "id": "sg:person.01235025714.02", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235025714.02"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2007-01-01", 
    "datePublishedReg": "2007-01-01", 
    "description": "We study \\documentclass[12pt]{minimal}\n\t\t\t\t\\usepackage{amsmath}\n\t\t\t\t\\usepackage{wasysym}\n\t\t\t\t\\usepackage{amsfonts}\n\t\t\t\t\\usepackage{amssymb}\n\t\t\t\t\\usepackage{amsbsy}\n\t\t\t\t\\usepackage{mathrsfs}\n\t\t\t\t\\usepackage{upgreek}\n\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\n\t\t\t\t\\begin{document}$$\n\\mathcal{N} = 2\n$$\\end{document} supersymmetric four-dimensional gauge theories, in a certain 525-02 = 2 supergravity background, called the\u03a9-background. The partition function of the theory in the \u03a9-background can be calculated explicitly. We investigate various representations for this partition function: a statistical sum over random partitions, a partition function of the ensemble of random curves, and a free fermion correlator.These representations allow us to derive rigorously the Seiberg-Witten geometry, the curves, the differentials, and the prepotential.We study pure 525-03 = 2 theory, as well as the theory with matter hypermultiplets in the fundamental or adjoint representations, and the five-dimensional theory compactified on a circle.", 
    "editor": [
      {
        "familyName": "Etingof", 
        "givenName": "Pavel", 
        "type": "Person"
      }, 
      {
        "familyName": "Retakh", 
        "givenName": "Vladimir", 
        "type": "Person"
      }, 
      {
        "familyName": "Singer", 
        "givenName": "I. M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-8176-4467-9_15", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-0-8176-4076-7", 
        "978-0-8176-4467-3"
      ], 
      "name": "The Unity of Mathematics", 
      "type": "Book"
    }, 
    "keywords": [
      "partition function", 
      "random partitions", 
      "four-dimensional gauge theories", 
      "Seiberg-Witten geometry", 
      "Seiberg-Witten theory", 
      "five-dimensional theory", 
      "statistical sum", 
      "\u03a9-background", 
      "random curves", 
      "matter hypermultiplets", 
      "gauge theory", 
      "supergravity background", 
      "adjoint representation", 
      "fermion correlators", 
      "theory", 
      "representation", 
      "hypermultiplets", 
      "prepotential", 
      "correlator", 
      "partition", 
      "geometry", 
      "function", 
      "ensemble", 
      "sum", 
      "curves", 
      "circle", 
      "differential", 
      "background"
    ], 
    "name": "Seiberg-Witten Theory and Random Partitions", 
    "pagination": "525-596", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1035404476"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-8176-4467-9_15"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-8176-4467-9_15", 
      "https://app.dimensions.ai/details/publication/pub.1035404476"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:48", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_463.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/0-8176-4467-9_15"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-8176-4467-9_15'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      53 URIs      46 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-8176-4467-9_15 schema:about anzsrc-for:01
2 anzsrc-for:0101
3 schema:author Nf5fa17e337044282ad6ab044a0f0e4e4
4 schema:datePublished 2007-01-01
5 schema:datePublishedReg 2007-01-01
6 schema:description We study \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} = 2 $$\end{document} supersymmetric four-dimensional gauge theories, in a certain 525-02 = 2 supergravity background, called theΩ-background. The partition function of the theory in the Ω-background can be calculated explicitly. We investigate various representations for this partition function: a statistical sum over random partitions, a partition function of the ensemble of random curves, and a free fermion correlator.These representations allow us to derive rigorously the Seiberg-Witten geometry, the curves, the differentials, and the prepotential.We study pure 525-03 = 2 theory, as well as the theory with matter hypermultiplets in the fundamental or adjoint representations, and the five-dimensional theory compactified on a circle.
7 schema:editor N818ae63ffeea4e179c9870436ed1e8ee
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N534b0cb40ad94efa950df1199d5ccc28
12 schema:keywords Seiberg-Witten geometry
13 Seiberg-Witten theory
14 adjoint representation
15 background
16 circle
17 correlator
18 curves
19 differential
20 ensemble
21 fermion correlators
22 five-dimensional theory
23 four-dimensional gauge theories
24 function
25 gauge theory
26 geometry
27 hypermultiplets
28 matter hypermultiplets
29 partition
30 partition function
31 prepotential
32 random curves
33 random partitions
34 representation
35 statistical sum
36 sum
37 supergravity background
38 theory
39 Ω-background
40 schema:name Seiberg-Witten Theory and Random Partitions
41 schema:pagination 525-596
42 schema:productId N09b0abab9989494a8310331e241f8af7
43 N0f125d06cd6d40a4aad8ca6931ba1177
44 schema:publisher N1dd07d10ab6c4b658c30cc0e9450e6ee
45 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035404476
46 https://doi.org/10.1007/0-8176-4467-9_15
47 schema:sdDatePublished 2022-05-20T07:48
48 schema:sdLicense https://scigraph.springernature.com/explorer/license/
49 schema:sdPublisher Ne7f748809ec64e97910491e65c70e0c7
50 schema:url https://doi.org/10.1007/0-8176-4467-9_15
51 sgo:license sg:explorer/license/
52 sgo:sdDataset chapters
53 rdf:type schema:Chapter
54 N09b0abab9989494a8310331e241f8af7 schema:name dimensions_id
55 schema:value pub.1035404476
56 rdf:type schema:PropertyValue
57 N0f125d06cd6d40a4aad8ca6931ba1177 schema:name doi
58 schema:value 10.1007/0-8176-4467-9_15
59 rdf:type schema:PropertyValue
60 N101d8453a2a6499985555217268fb407 schema:familyName Retakh
61 schema:givenName Vladimir
62 rdf:type schema:Person
63 N1c216faafb274259b386a256dc6593db rdf:first N101d8453a2a6499985555217268fb407
64 rdf:rest Ne476a59f67054434bc7af39868fa6a1e
65 N1dd07d10ab6c4b658c30cc0e9450e6ee schema:name Springer Nature
66 rdf:type schema:Organisation
67 N3ee4bc110595473d98631bffc044faf1 schema:familyName Singer
68 schema:givenName I. M.
69 rdf:type schema:Person
70 N534b0cb40ad94efa950df1199d5ccc28 schema:isbn 978-0-8176-4076-7
71 978-0-8176-4467-3
72 schema:name The Unity of Mathematics
73 rdf:type schema:Book
74 N72476c71a7564076b12f87f17945e734 rdf:first sg:person.01235025714.02
75 rdf:rest rdf:nil
76 N818ae63ffeea4e179c9870436ed1e8ee rdf:first Nc15d8de29368414782610d3b7c4f092c
77 rdf:rest N1c216faafb274259b386a256dc6593db
78 Nc15d8de29368414782610d3b7c4f092c schema:familyName Etingof
79 schema:givenName Pavel
80 rdf:type schema:Person
81 Ne476a59f67054434bc7af39868fa6a1e rdf:first N3ee4bc110595473d98631bffc044faf1
82 rdf:rest rdf:nil
83 Ne7f748809ec64e97910491e65c70e0c7 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 Nf5fa17e337044282ad6ab044a0f0e4e4 rdf:first sg:person.014415552056.90
86 rdf:rest N72476c71a7564076b12f87f17945e734
87 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
88 schema:name Mathematical Sciences
89 rdf:type schema:DefinedTerm
90 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
91 schema:name Pure Mathematics
92 rdf:type schema:DefinedTerm
93 sg:person.01235025714.02 schema:affiliation grid-institutes:grid.16750.35
94 schema:familyName Okounkov
95 schema:givenName Andrei
96 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01235025714.02
97 rdf:type schema:Person
98 sg:person.014415552056.90 schema:affiliation grid-institutes:grid.425258.c
99 schema:familyName Nekrasov
100 schema:givenName Nikita A.
101 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014415552056.90
102 rdf:type schema:Person
103 grid-institutes:grid.16750.35 schema:alternateName Department of Mathematics, Princeton University, 08544, Princeton, NJ, USA
104 schema:name Department of Mathematics, Princeton University, 08544, Princeton, NJ, USA
105 rdf:type schema:Organization
106 grid-institutes:grid.425258.c schema:alternateName Institut des Hautes Études Scientifiques, 35 Route de Chartres, F-91440, Bures-sur-Yvette, France
107 schema:name Institut des Hautes Études Scientifiques, 35 Route de Chartres, F-91440, Bures-sur-Yvette, France
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...