Integrating Multiple Geophysical Datasets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Kenneth L. Kvamme

ABSTRACT

In the past two decades improvements in geophysical instrumentation, survey techniques, and computer methods for handling spatial data have yielded significant advances in the management, portrayal, and interpretation of subsurface data. Geophysical investigations on archaeological sites have long utilized multiple survey methods. The use of difference methods allows responses to a variety of physical properties and the possibility of confirmatory, complementary, or entirely new information from each device. Such datasets have conventionally been examined side-by-side allowing informative comparisons. With GIS and other computer methods data may now be co-registered and more fully integrated in composite graphics of multidimensional content. Several approaches to “data fusion” are investigated including mathematical-statistical techniques, GIS, and advanced computer graphics. High-resolution, large-area datasets from the historic commercial center of Army City (A.D. 1917–1921), in central Kansas, illustrate benefits of these approaches. More... »

PAGES

345-374

Book

TITLE

Remote Sensing in Archaeology

ISBN

978-0-387-44453-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-387-44455-6_14

DOI

http://dx.doi.org/10.1007/0-387-44455-6_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033992408


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Kvamme", 
        "givenName": "Kenneth L.", 
        "id": "sg:person.013220242731.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013220242731.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0303-2434(03)00003-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002497420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0303-2434(03)00003-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002497420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/arp.231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007132635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-0763(199712)4:4<179::aid-arp85>3.0.co;2-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/arp.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024111667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/arp.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032627944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1099-0763(200012)7:4<203::aid-arp133>3.0.co;2-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040693770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0926-9851(92)90012-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052081943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0926-9851(92)90012-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052081943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3643005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053923061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1099-0763(200006)7:2<107::aid-arp138>3.3.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054248394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1099-0763(200006)7:2<69::aid-arp143>3.3.co;2-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054248397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1099-0763(200006)7:2<81::aid-arp145>3.3.co;2-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054248398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3557103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070371861"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "In the past two decades improvements in geophysical instrumentation, survey techniques, and computer methods for handling spatial data have yielded significant advances in the management, portrayal, and interpretation of subsurface data. Geophysical investigations on archaeological sites have long utilized multiple survey methods. The use of difference methods allows responses to a variety of physical properties and the possibility of confirmatory, complementary, or entirely new information from each device. Such datasets have conventionally been examined side-by-side allowing informative comparisons. With GIS and other computer methods data may now be co-registered and more fully integrated in composite graphics of multidimensional content. Several approaches to \u201cdata fusion\u201d are investigated including mathematical-statistical techniques, GIS, and advanced computer graphics. High-resolution, large-area datasets from the historic commercial center of Army City (A.D. 1917\u20131921), in central Kansas, illustrate benefits of these approaches.", 
    "editor": [
      {
        "familyName": "Wiseman", 
        "givenName": "James", 
        "type": "Person"
      }, 
      {
        "familyName": "El-Baz", 
        "givenName": "Farouk", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-387-44455-6_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-44453-6"
      ], 
      "name": "Remote Sensing in Archaeology", 
      "type": "Book"
    }, 
    "name": "Integrating Multiple Geophysical Datasets", 
    "pagination": "345-374", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-387-44455-6_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a1ee9ca0cc89d452bd01cf17dce43387cbe39d13718d5075f42cc36064c11651"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033992408"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-387-44455-6_14", 
      "https://app.dimensions.ai/details/publication/pub.1033992408"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000264.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/0-387-44455-6_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-387-44455-6_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-387-44455-6_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-387-44455-6_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-387-44455-6_14'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-387-44455-6_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Ne8b20a62ec574c79ba9b4247462b39bf
4 schema:citation https://doi.org/10.1002/(sici)1099-0763(199712)4:4<179::aid-arp85>3.0.co;2-u
5 https://doi.org/10.1002/1099-0763(200006)7:2<107::aid-arp138>3.3.co;2-s
6 https://doi.org/10.1002/1099-0763(200006)7:2<69::aid-arp143>3.3.co;2-i
7 https://doi.org/10.1002/1099-0763(200006)7:2<81::aid-arp145>3.3.co;2-y
8 https://doi.org/10.1002/1099-0763(200012)7:4<203::aid-arp133>3.0.co;2-t
9 https://doi.org/10.1002/arp.183
10 https://doi.org/10.1002/arp.211
11 https://doi.org/10.1002/arp.231
12 https://doi.org/10.1016/0926-9851(92)90012-a
13 https://doi.org/10.1016/s0303-2434(03)00003-5
14 https://doi.org/10.2307/3557103
15 https://doi.org/10.2307/3643005
16 schema:datePublished 2007
17 schema:datePublishedReg 2007-01-01
18 schema:description In the past two decades improvements in geophysical instrumentation, survey techniques, and computer methods for handling spatial data have yielded significant advances in the management, portrayal, and interpretation of subsurface data. Geophysical investigations on archaeological sites have long utilized multiple survey methods. The use of difference methods allows responses to a variety of physical properties and the possibility of confirmatory, complementary, or entirely new information from each device. Such datasets have conventionally been examined side-by-side allowing informative comparisons. With GIS and other computer methods data may now be co-registered and more fully integrated in composite graphics of multidimensional content. Several approaches to “data fusion” are investigated including mathematical-statistical techniques, GIS, and advanced computer graphics. High-resolution, large-area datasets from the historic commercial center of Army City (A.D. 1917–1921), in central Kansas, illustrate benefits of these approaches.
19 schema:editor N1324b8206115421c9406def4940f4933
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N08a482c5e795469e8fdbef456f059cb4
24 schema:name Integrating Multiple Geophysical Datasets
25 schema:pagination 345-374
26 schema:productId N4b9a390d110e49f2b0bfdf3d3c833ea6
27 Na2a9d84700684e69a83942ea165f21b5
28 Nfe4147f5a593407983b53469e2099ef0
29 schema:publisher Nc5a4759fe3ef4bbeab68035e1062fd43
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033992408
31 https://doi.org/10.1007/0-387-44455-6_14
32 schema:sdDatePublished 2019-04-15T13:29
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher N17eec2d27d324ceda4d5ae7047ef9693
35 schema:url http://link.springer.com/10.1007/0-387-44455-6_14
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N08a482c5e795469e8fdbef456f059cb4 schema:isbn 978-0-387-44453-6
40 schema:name Remote Sensing in Archaeology
41 rdf:type schema:Book
42 N1324b8206115421c9406def4940f4933 rdf:first Ndaf872449b8a4f969dbaac0fcd4ce082
43 rdf:rest Nde6e30868ff141769a48e622365ffc11
44 N17eec2d27d324ceda4d5ae7047ef9693 schema:name Springer Nature - SN SciGraph project
45 rdf:type schema:Organization
46 N4b9a390d110e49f2b0bfdf3d3c833ea6 schema:name readcube_id
47 schema:value a1ee9ca0cc89d452bd01cf17dce43387cbe39d13718d5075f42cc36064c11651
48 rdf:type schema:PropertyValue
49 Na2a9d84700684e69a83942ea165f21b5 schema:name doi
50 schema:value 10.1007/0-387-44455-6_14
51 rdf:type schema:PropertyValue
52 Nbc519067edaa4b76827ab312e3a84ff2 schema:familyName El-Baz
53 schema:givenName Farouk
54 rdf:type schema:Person
55 Nc5a4759fe3ef4bbeab68035e1062fd43 schema:location New York, NY
56 schema:name Springer New York
57 rdf:type schema:Organisation
58 Ndaf872449b8a4f969dbaac0fcd4ce082 schema:familyName Wiseman
59 schema:givenName James
60 rdf:type schema:Person
61 Nde6e30868ff141769a48e622365ffc11 rdf:first Nbc519067edaa4b76827ab312e3a84ff2
62 rdf:rest rdf:nil
63 Ne8b20a62ec574c79ba9b4247462b39bf rdf:first sg:person.013220242731.50
64 rdf:rest rdf:nil
65 Nfe4147f5a593407983b53469e2099ef0 schema:name dimensions_id
66 schema:value pub.1033992408
67 rdf:type schema:PropertyValue
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:person.013220242731.50 schema:familyName Kvamme
75 schema:givenName Kenneth L.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013220242731.50
77 rdf:type schema:Person
78 https://doi.org/10.1002/(sici)1099-0763(199712)4:4<179::aid-arp85>3.0.co;2-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1016127348
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1002/1099-0763(200006)7:2<107::aid-arp138>3.3.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1054248394
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/1099-0763(200006)7:2<69::aid-arp143>3.3.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1054248397
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1002/1099-0763(200006)7:2<81::aid-arp145>3.3.co;2-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1054248398
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1002/1099-0763(200012)7:4<203::aid-arp133>3.0.co;2-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1040693770
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1002/arp.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032627944
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/arp.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024111667
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1002/arp.231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007132635
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0926-9851(92)90012-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1052081943
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0303-2434(03)00003-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002497420
97 rdf:type schema:CreativeWork
98 https://doi.org/10.2307/3557103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070371861
99 rdf:type schema:CreativeWork
100 https://doi.org/10.2307/3643005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053923061
101 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...