Integrating Multiple Geophysical Datasets View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2007

AUTHORS

Kenneth L. Kvamme

ABSTRACT

In the past two decades improvements in geophysical instrumentation, survey techniques, and computer methods for handling spatial data have yielded significant advances in the management, portrayal, and interpretation of subsurface data. Geophysical investigations on archaeological sites have long utilized multiple survey methods. The use of difference methods allows responses to a variety of physical properties and the possibility of confirmatory, complementary, or entirely new information from each device. Such datasets have conventionally been examined side-by-side allowing informative comparisons. With GIS and other computer methods data may now be co-registered and more fully integrated in composite graphics of multidimensional content. Several approaches to “data fusion” are investigated including mathematical-statistical techniques, GIS, and advanced computer graphics. High-resolution, large-area datasets from the historic commercial center of Army City (A.D. 1917–1921), in central Kansas, illustrate benefits of these approaches. More... »

PAGES

345-374

Book

TITLE

Remote Sensing in Archaeology

ISBN

978-0-387-44453-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-387-44455-6_14

DOI

http://dx.doi.org/10.1007/0-387-44455-6_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1033992408


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Kvamme", 
        "givenName": "Kenneth L.", 
        "id": "sg:person.013220242731.50", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013220242731.50"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/s0303-2434(03)00003-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002497420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0303-2434(03)00003-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002497420"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/arp.231", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007132635"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/(sici)1099-0763(199712)4:4<179::aid-arp85>3.0.co;2-u", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016127348"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/arp.211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024111667"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/arp.183", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032627944"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1099-0763(200012)7:4<203::aid-arp133>3.0.co;2-t", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040693770"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0926-9851(92)90012-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052081943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0926-9851(92)90012-a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052081943"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3643005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053923061"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1099-0763(200006)7:2<107::aid-arp138>3.3.co;2-s", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054248394"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1099-0763(200006)7:2<69::aid-arp143>3.3.co;2-i", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054248397"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/1099-0763(200006)7:2<81::aid-arp145>3.3.co;2-y", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1054248398"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/3557103", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1070371861"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2007", 
    "datePublishedReg": "2007-01-01", 
    "description": "In the past two decades improvements in geophysical instrumentation, survey techniques, and computer methods for handling spatial data have yielded significant advances in the management, portrayal, and interpretation of subsurface data. Geophysical investigations on archaeological sites have long utilized multiple survey methods. The use of difference methods allows responses to a variety of physical properties and the possibility of confirmatory, complementary, or entirely new information from each device. Such datasets have conventionally been examined side-by-side allowing informative comparisons. With GIS and other computer methods data may now be co-registered and more fully integrated in composite graphics of multidimensional content. Several approaches to \u201cdata fusion\u201d are investigated including mathematical-statistical techniques, GIS, and advanced computer graphics. High-resolution, large-area datasets from the historic commercial center of Army City (A.D. 1917\u20131921), in central Kansas, illustrate benefits of these approaches.", 
    "editor": [
      {
        "familyName": "Wiseman", 
        "givenName": "James", 
        "type": "Person"
      }, 
      {
        "familyName": "El-Baz", 
        "givenName": "Farouk", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-387-44455-6_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-44453-6"
      ], 
      "name": "Remote Sensing in Archaeology", 
      "type": "Book"
    }, 
    "name": "Integrating Multiple Geophysical Datasets", 
    "pagination": "345-374", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-387-44455-6_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "a1ee9ca0cc89d452bd01cf17dce43387cbe39d13718d5075f42cc36064c11651"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1033992408"
        ]
      }
    ], 
    "publisher": {
      "location": "New York, NY", 
      "name": "Springer New York", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-387-44455-6_14", 
      "https://app.dimensions.ai/details/publication/pub.1033992408"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:29", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000264.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/0-387-44455-6_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-387-44455-6_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-387-44455-6_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-387-44455-6_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-387-44455-6_14'


 

This table displays all metadata directly associated to this object as RDF triples.

101 TRIPLES      23 PREDICATES      39 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-387-44455-6_14 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N91391f5d154b4438a780cf958a7f752f
4 schema:citation https://doi.org/10.1002/(sici)1099-0763(199712)4:4<179::aid-arp85>3.0.co;2-u
5 https://doi.org/10.1002/1099-0763(200006)7:2<107::aid-arp138>3.3.co;2-s
6 https://doi.org/10.1002/1099-0763(200006)7:2<69::aid-arp143>3.3.co;2-i
7 https://doi.org/10.1002/1099-0763(200006)7:2<81::aid-arp145>3.3.co;2-y
8 https://doi.org/10.1002/1099-0763(200012)7:4<203::aid-arp133>3.0.co;2-t
9 https://doi.org/10.1002/arp.183
10 https://doi.org/10.1002/arp.211
11 https://doi.org/10.1002/arp.231
12 https://doi.org/10.1016/0926-9851(92)90012-a
13 https://doi.org/10.1016/s0303-2434(03)00003-5
14 https://doi.org/10.2307/3557103
15 https://doi.org/10.2307/3643005
16 schema:datePublished 2007
17 schema:datePublishedReg 2007-01-01
18 schema:description In the past two decades improvements in geophysical instrumentation, survey techniques, and computer methods for handling spatial data have yielded significant advances in the management, portrayal, and interpretation of subsurface data. Geophysical investigations on archaeological sites have long utilized multiple survey methods. The use of difference methods allows responses to a variety of physical properties and the possibility of confirmatory, complementary, or entirely new information from each device. Such datasets have conventionally been examined side-by-side allowing informative comparisons. With GIS and other computer methods data may now be co-registered and more fully integrated in composite graphics of multidimensional content. Several approaches to “data fusion” are investigated including mathematical-statistical techniques, GIS, and advanced computer graphics. High-resolution, large-area datasets from the historic commercial center of Army City (A.D. 1917–1921), in central Kansas, illustrate benefits of these approaches.
19 schema:editor Nb44e97cbe6fc4d48b591f5fd9ecb15d8
20 schema:genre chapter
21 schema:inLanguage en
22 schema:isAccessibleForFree false
23 schema:isPartOf N77f1cc2d092e461aacacd1e311132b74
24 schema:name Integrating Multiple Geophysical Datasets
25 schema:pagination 345-374
26 schema:productId N06daf846084940fb85a2f106c5e1cdb7
27 N0a16ef9d37fe40318c21be29c27ae51b
28 N60fa9785dc144e93b509531dc39d1eae
29 schema:publisher N4a1c981d27cb42deb2adac4fa343a3d3
30 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033992408
31 https://doi.org/10.1007/0-387-44455-6_14
32 schema:sdDatePublished 2019-04-15T13:29
33 schema:sdLicense https://scigraph.springernature.com/explorer/license/
34 schema:sdPublisher Nb3683f7a51ed49eab21bdbc6caadfcdf
35 schema:url http://link.springer.com/10.1007/0-387-44455-6_14
36 sgo:license sg:explorer/license/
37 sgo:sdDataset chapters
38 rdf:type schema:Chapter
39 N06daf846084940fb85a2f106c5e1cdb7 schema:name readcube_id
40 schema:value a1ee9ca0cc89d452bd01cf17dce43387cbe39d13718d5075f42cc36064c11651
41 rdf:type schema:PropertyValue
42 N0a16ef9d37fe40318c21be29c27ae51b schema:name dimensions_id
43 schema:value pub.1033992408
44 rdf:type schema:PropertyValue
45 N4a050c80542d4ee0a035552291e2221d schema:familyName Wiseman
46 schema:givenName James
47 rdf:type schema:Person
48 N4a1c981d27cb42deb2adac4fa343a3d3 schema:location New York, NY
49 schema:name Springer New York
50 rdf:type schema:Organisation
51 N60fa9785dc144e93b509531dc39d1eae schema:name doi
52 schema:value 10.1007/0-387-44455-6_14
53 rdf:type schema:PropertyValue
54 N77f1cc2d092e461aacacd1e311132b74 schema:isbn 978-0-387-44453-6
55 schema:name Remote Sensing in Archaeology
56 rdf:type schema:Book
57 N91391f5d154b4438a780cf958a7f752f rdf:first sg:person.013220242731.50
58 rdf:rest rdf:nil
59 Nb3683f7a51ed49eab21bdbc6caadfcdf schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 Nb44e97cbe6fc4d48b591f5fd9ecb15d8 rdf:first N4a050c80542d4ee0a035552291e2221d
62 rdf:rest Nceaba0c861dc4ed79970bc758474edd2
63 Ncbe03437d8314325a3c863c196f4dbe8 schema:familyName El-Baz
64 schema:givenName Farouk
65 rdf:type schema:Person
66 Nceaba0c861dc4ed79970bc758474edd2 rdf:first Ncbe03437d8314325a3c863c196f4dbe8
67 rdf:rest rdf:nil
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:person.013220242731.50 schema:familyName Kvamme
75 schema:givenName Kenneth L.
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013220242731.50
77 rdf:type schema:Person
78 https://doi.org/10.1002/(sici)1099-0763(199712)4:4<179::aid-arp85>3.0.co;2-u schema:sameAs https://app.dimensions.ai/details/publication/pub.1016127348
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1002/1099-0763(200006)7:2<107::aid-arp138>3.3.co;2-s schema:sameAs https://app.dimensions.ai/details/publication/pub.1054248394
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1002/1099-0763(200006)7:2<69::aid-arp143>3.3.co;2-i schema:sameAs https://app.dimensions.ai/details/publication/pub.1054248397
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1002/1099-0763(200006)7:2<81::aid-arp145>3.3.co;2-y schema:sameAs https://app.dimensions.ai/details/publication/pub.1054248398
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1002/1099-0763(200012)7:4<203::aid-arp133>3.0.co;2-t schema:sameAs https://app.dimensions.ai/details/publication/pub.1040693770
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1002/arp.183 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032627944
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1002/arp.211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024111667
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1002/arp.231 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007132635
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0926-9851(92)90012-a schema:sameAs https://app.dimensions.ai/details/publication/pub.1052081943
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/s0303-2434(03)00003-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002497420
97 rdf:type schema:CreativeWork
98 https://doi.org/10.2307/3557103 schema:sameAs https://app.dimensions.ai/details/publication/pub.1070371861
99 rdf:type schema:CreativeWork
100 https://doi.org/10.2307/3643005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053923061
101 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...