Perfect Local Randomness in Pseudo-random Sequences View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

1990

AUTHORS

Ueli M. Maurer , James L. Massey

ABSTRACT

The concept of provable cryptographic security for pseudo-random number generators that was introduced by Schnorr is investigated and extended. The cryptanalyst is assumed to have infinite computational resources and hence the security of the generators does not rely on any unproved hypothesis about the difficulty of solving a certain problem, but rather relies on the assumption that the number of bits of the generated sequence the enemy can access is limited. The concept of perfect local randomness of a sequence generator is introduced and investigated using some results from coding theory. The theoretical and practical cryptographic implications of this concept are discussed. Possible extensions of the concept of local randomness as well as some applications are proposed. More... »

PAGES

100-112

Book

TITLE

Advances in Cryptology — CRYPTO’ 89 Proceedings

ISBN

978-0-387-97317-3
978-0-387-34805-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-387-34805-0_11

DOI

http://dx.doi.org/10.1007/0-387-34805-0_11

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1048976759


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0802", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computation Theory and Mathematics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute for Signal and Information Processing, Swiss Federal Institute of Technology, CH-8092, Z\u00fcrich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Signal and Information Processing, Swiss Federal Institute of Technology, CH-8092, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Maurer", 
        "givenName": "Ueli M.", 
        "id": "sg:person.01316567627.91", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Institute for Signal and Information Processing, Swiss Federal Institute of Technology, CH-8092, Z\u00fcrich, Switzerland", 
          "id": "http://www.grid.ac/institutes/grid.5801.c", 
          "name": [
            "Institute for Signal and Information Processing, Swiss Federal Institute of Technology, CH-8092, Z\u00fcrich, Switzerland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Massey", 
        "givenName": "James L.", 
        "id": "sg:person.01034572767.77", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034572767.77"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "1990", 
    "datePublishedReg": "1990-01-01", 
    "description": "The concept of provable cryptographic security for pseudo-random number generators that was introduced by Schnorr is investigated and extended. The cryptanalyst is assumed to have infinite computational resources and hence the security of the generators does not rely on any unproved hypothesis about the difficulty of solving a certain problem, but rather relies on the assumption that the number of bits of the generated sequence the enemy can access is limited. The concept of perfect local randomness of a sequence generator is introduced and investigated using some results from coding theory. The theoretical and practical cryptographic implications of this concept are discussed. Possible extensions of the concept of local randomness as well as some applications are proposed.", 
    "editor": [
      {
        "familyName": "Brassard", 
        "givenName": "Gilles", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-387-34805-0_11", 
    "inLanguage": "en", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-0-387-97317-3", 
        "978-0-387-34805-6"
      ], 
      "name": "Advances in Cryptology \u2014 CRYPTO\u2019 89 Proceedings", 
      "type": "Book"
    }, 
    "keywords": [
      "infinite computational resources", 
      "pseudo-random number generator", 
      "number of bits", 
      "cryptographic security", 
      "pseudo-random sequences", 
      "computational resources", 
      "cryptographic implications", 
      "number generator", 
      "sequence generator", 
      "security", 
      "local randomness", 
      "possible extensions", 
      "randomness", 
      "certain problems", 
      "cryptanalyst", 
      "Schnorr", 
      "concept", 
      "bits", 
      "generator", 
      "resources", 
      "applications", 
      "extension", 
      "unproved hypothesis", 
      "sequence", 
      "difficulties", 
      "number", 
      "assumption", 
      "results", 
      "theory", 
      "enemies", 
      "implications", 
      "hypothesis", 
      "problem", 
      "provable cryptographic security", 
      "perfect local randomness", 
      "practical cryptographic implications"
    ], 
    "name": "Perfect Local Randomness in Pseudo-random Sequences", 
    "pagination": "100-112", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1048976759"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-387-34805-0_11"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-387-34805-0_11", 
      "https://app.dimensions.ai/details/publication/pub.1048976759"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2021-12-01T19:57", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/chapter/chapter_149.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/0-387-34805-0_11"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-387-34805-0_11'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-387-34805-0_11'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-387-34805-0_11'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-387-34805-0_11'


 

This table displays all metadata directly associated to this object as RDF triples.

103 TRIPLES      23 PREDICATES      62 URIs      55 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-387-34805-0_11 schema:about anzsrc-for:08
2 anzsrc-for:0802
3 schema:author N3b348d0add464319abddd8887e9a8e26
4 schema:datePublished 1990
5 schema:datePublishedReg 1990-01-01
6 schema:description The concept of provable cryptographic security for pseudo-random number generators that was introduced by Schnorr is investigated and extended. The cryptanalyst is assumed to have infinite computational resources and hence the security of the generators does not rely on any unproved hypothesis about the difficulty of solving a certain problem, but rather relies on the assumption that the number of bits of the generated sequence the enemy can access is limited. The concept of perfect local randomness of a sequence generator is introduced and investigated using some results from coding theory. The theoretical and practical cryptographic implications of this concept are discussed. Possible extensions of the concept of local randomness as well as some applications are proposed.
7 schema:editor Na85f0bf505d04dea92ed376cc9628328
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree true
11 schema:isPartOf N239e92f33a334d18b444300685e07259
12 schema:keywords Schnorr
13 applications
14 assumption
15 bits
16 certain problems
17 computational resources
18 concept
19 cryptanalyst
20 cryptographic implications
21 cryptographic security
22 difficulties
23 enemies
24 extension
25 generator
26 hypothesis
27 implications
28 infinite computational resources
29 local randomness
30 number
31 number generator
32 number of bits
33 perfect local randomness
34 possible extensions
35 practical cryptographic implications
36 problem
37 provable cryptographic security
38 pseudo-random number generator
39 pseudo-random sequences
40 randomness
41 resources
42 results
43 security
44 sequence
45 sequence generator
46 theory
47 unproved hypothesis
48 schema:name Perfect Local Randomness in Pseudo-random Sequences
49 schema:pagination 100-112
50 schema:productId N3266244d76c94d67938c8a6caad9a059
51 N8c28f81191e842ad933e0e9216346d70
52 schema:publisher N003c2d86fcf143c8959e82f6b58e2b7a
53 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048976759
54 https://doi.org/10.1007/0-387-34805-0_11
55 schema:sdDatePublished 2021-12-01T19:57
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N5f8f1a89d1434e4aa32a4486c077d7c4
58 schema:url https://doi.org/10.1007/0-387-34805-0_11
59 sgo:license sg:explorer/license/
60 sgo:sdDataset chapters
61 rdf:type schema:Chapter
62 N003c2d86fcf143c8959e82f6b58e2b7a schema:name Springer Nature
63 rdf:type schema:Organisation
64 N239e92f33a334d18b444300685e07259 schema:isbn 978-0-387-34805-6
65 978-0-387-97317-3
66 schema:name Advances in Cryptology — CRYPTO’ 89 Proceedings
67 rdf:type schema:Book
68 N289d5ea91c994010a655f3ddaf2acde8 schema:familyName Brassard
69 schema:givenName Gilles
70 rdf:type schema:Person
71 N3266244d76c94d67938c8a6caad9a059 schema:name doi
72 schema:value 10.1007/0-387-34805-0_11
73 rdf:type schema:PropertyValue
74 N3a0f6e1b6e1a4fa29ee7d491d33688a4 rdf:first sg:person.01034572767.77
75 rdf:rest rdf:nil
76 N3b348d0add464319abddd8887e9a8e26 rdf:first sg:person.01316567627.91
77 rdf:rest N3a0f6e1b6e1a4fa29ee7d491d33688a4
78 N5f8f1a89d1434e4aa32a4486c077d7c4 schema:name Springer Nature - SN SciGraph project
79 rdf:type schema:Organization
80 N8c28f81191e842ad933e0e9216346d70 schema:name dimensions_id
81 schema:value pub.1048976759
82 rdf:type schema:PropertyValue
83 Na85f0bf505d04dea92ed376cc9628328 rdf:first N289d5ea91c994010a655f3ddaf2acde8
84 rdf:rest rdf:nil
85 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
86 schema:name Information and Computing Sciences
87 rdf:type schema:DefinedTerm
88 anzsrc-for:0802 schema:inDefinedTermSet anzsrc-for:
89 schema:name Computation Theory and Mathematics
90 rdf:type schema:DefinedTerm
91 sg:person.01034572767.77 schema:affiliation grid-institutes:grid.5801.c
92 schema:familyName Massey
93 schema:givenName James L.
94 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01034572767.77
95 rdf:type schema:Person
96 sg:person.01316567627.91 schema:affiliation grid-institutes:grid.5801.c
97 schema:familyName Maurer
98 schema:givenName Ueli M.
99 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01316567627.91
100 rdf:type schema:Person
101 grid-institutes:grid.5801.c schema:alternateName Institute for Signal and Information Processing, Swiss Federal Institute of Technology, CH-8092, Zürich, Switzerland
102 schema:name Institute for Signal and Information Processing, Swiss Federal Institute of Technology, CH-8092, Zürich, Switzerland
103 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...