Analysis of a PDE Model for Sandpile Growth View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2006

AUTHORS

P. Cannarsa

ABSTRACT

In the dynamical theory of granular matter, the so-called table problem consists in studying the evolution of a heap of matter poured continuously onto a bounded domain Ω ⊂ R2. The mathematical description of the table problem, at an equilibrium configuration, can be reduced to a boundary value problem for a system of partial differential equations. The analysis of such a system, also connected with other mathematical models such as the Monge-Kantorovich problem, is the object of this paper. Our main result is an integral representation formula for the solution, in terms of the boundary curvature and of the normal distance to the cut locus of Ω. More... »

PAGES

41-50

References to SciGraph publications

  • 1998-05. Existence of solutions for a class of non convex minimum problems in MATHEMATISCHE ZEITSCHRIFT
  • 1999-08. Dynamical models for granular matter in GRANULAR MATTER
  • 2002-08. Uniqueness and transport density in Monge's mass transportation problem in CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS
  • Book

    TITLE

    System Modeling and Optimization

    ISBN

    0-387-32774-6

    Author Affiliations

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/0-387-33006-2_5

    DOI

    http://dx.doi.org/10.1007/0-387-33006-2_5

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1007055452


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0101", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Pure Mathematics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Mathematical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "University of Rome Tor Vergata", 
              "id": "https://www.grid.ac/institutes/grid.6530.0", 
              "name": [
                "Department of Mathematics, University of Rome \u201cTor Vergata\u201d, Rome, Italy"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Cannarsa", 
            "givenName": "P.", 
            "id": "sg:person.014257010655.09", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1090/s0002-9947-00-02564-2", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000466855"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/pl00004605", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1001742682", 
              "https://doi.org/10.1007/pl00004605"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s100350050029", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1003376816", 
              "https://doi.org/10.1007/s100350050029"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/s005260100119", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014659694", 
              "https://doi.org/10.1007/s005260100119"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/s0294-1449(97)80140-0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1022428008"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jdeq.1996.0166", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1028421587"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1002/cpa.20051", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1040872345"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1006/jdeq.1997.3243", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1046575476"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1051/jp1:1996138", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1056974370"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/s0363012996311319", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062881304"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2006", 
        "datePublishedReg": "2006-01-01", 
        "description": "In the dynamical theory of granular matter, the so-called table problem consists in studying the evolution of a heap of matter poured continuously onto a bounded domain \u03a9 \u2282 R2. The mathematical description of the table problem, at an equilibrium configuration, can be reduced to a boundary value problem for a system of partial differential equations. The analysis of such a system, also connected with other mathematical models such as the Monge-Kantorovich problem, is the object of this paper. Our main result is an integral representation formula for the solution, in terms of the boundary curvature and of the normal distance to the cut locus of \u03a9.", 
        "editor": [
          {
            "familyName": "Ceragioli", 
            "givenName": "F.", 
            "type": "Person"
          }, 
          {
            "familyName": "Dontchev", 
            "givenName": "A.", 
            "type": "Person"
          }, 
          {
            "familyName": "Futura", 
            "givenName": "H.", 
            "type": "Person"
          }, 
          {
            "familyName": "Marti", 
            "givenName": "K.", 
            "type": "Person"
          }, 
          {
            "familyName": "Pandolfi", 
            "givenName": "L.", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/0-387-33006-2_5", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": true, 
        "isPartOf": {
          "isbn": [
            "0-387-32774-6"
          ], 
          "name": "System Modeling and Optimization", 
          "type": "Book"
        }, 
        "name": "Analysis of a PDE Model for Sandpile Growth", 
        "pagination": "41-50", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/0-387-33006-2_5"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "219bec666262e00d7dd75a735b0f55f1bef22adbaed18551543264bc884bc96d"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1007055452"
            ]
          }
        ], 
        "publisher": {
          "location": "Boston", 
          "name": "Kluwer Academic Publishers", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/0-387-33006-2_5", 
          "https://app.dimensions.ai/details/publication/pub.1007055452"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T17:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8678_00000247.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/0-387-33006-2_5"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-387-33006-2_5'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-387-33006-2_5'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-387-33006-2_5'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-387-33006-2_5'


     

    This table displays all metadata directly associated to this object as RDF triples.

    117 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/0-387-33006-2_5 schema:about anzsrc-for:01
    2 anzsrc-for:0101
    3 schema:author Ne153c10da04f4d24a2b4ecc2198e3859
    4 schema:citation sg:pub.10.1007/pl00004605
    5 sg:pub.10.1007/s005260100119
    6 sg:pub.10.1007/s100350050029
    7 https://doi.org/10.1002/cpa.20051
    8 https://doi.org/10.1006/jdeq.1996.0166
    9 https://doi.org/10.1006/jdeq.1997.3243
    10 https://doi.org/10.1016/s0294-1449(97)80140-0
    11 https://doi.org/10.1051/jp1:1996138
    12 https://doi.org/10.1090/s0002-9947-00-02564-2
    13 https://doi.org/10.1137/s0363012996311319
    14 schema:datePublished 2006
    15 schema:datePublishedReg 2006-01-01
    16 schema:description In the dynamical theory of granular matter, the so-called table problem consists in studying the evolution of a heap of matter poured continuously onto a bounded domain Ω ⊂ R2. The mathematical description of the table problem, at an equilibrium configuration, can be reduced to a boundary value problem for a system of partial differential equations. The analysis of such a system, also connected with other mathematical models such as the Monge-Kantorovich problem, is the object of this paper. Our main result is an integral representation formula for the solution, in terms of the boundary curvature and of the normal distance to the cut locus of Ω.
    17 schema:editor N546158d4c1704e0ab91e14c1d44ed096
    18 schema:genre chapter
    19 schema:inLanguage en
    20 schema:isAccessibleForFree true
    21 schema:isPartOf Nfb934a8f756842899c04c49acdcf03f5
    22 schema:name Analysis of a PDE Model for Sandpile Growth
    23 schema:pagination 41-50
    24 schema:productId N27c937db658c419ebd48c6c4506474dd
    25 N392618cd42ce479f8d6005dab65db97c
    26 Nb2d7a5311fd84973b278ad7dd30fd31c
    27 schema:publisher N01b4308325784834b4cf4226b6e5292e
    28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007055452
    29 https://doi.org/10.1007/0-387-33006-2_5
    30 schema:sdDatePublished 2019-04-15T17:11
    31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    32 schema:sdPublisher N0855fd00e9064760b51e4427920aa368
    33 schema:url http://link.springer.com/10.1007/0-387-33006-2_5
    34 sgo:license sg:explorer/license/
    35 sgo:sdDataset chapters
    36 rdf:type schema:Chapter
    37 N01b4308325784834b4cf4226b6e5292e schema:location Boston
    38 schema:name Kluwer Academic Publishers
    39 rdf:type schema:Organisation
    40 N0855fd00e9064760b51e4427920aa368 schema:name Springer Nature - SN SciGraph project
    41 rdf:type schema:Organization
    42 N246f005d7b8a414d881f63637680bfcc schema:familyName Ceragioli
    43 schema:givenName F.
    44 rdf:type schema:Person
    45 N256f3d1055e8420f922ddcd1303cecfd schema:familyName Futura
    46 schema:givenName H.
    47 rdf:type schema:Person
    48 N27c937db658c419ebd48c6c4506474dd schema:name dimensions_id
    49 schema:value pub.1007055452
    50 rdf:type schema:PropertyValue
    51 N392618cd42ce479f8d6005dab65db97c schema:name doi
    52 schema:value 10.1007/0-387-33006-2_5
    53 rdf:type schema:PropertyValue
    54 N546158d4c1704e0ab91e14c1d44ed096 rdf:first N246f005d7b8a414d881f63637680bfcc
    55 rdf:rest Ne8e6dcab07f94e4992c7de445657c653
    56 N5d0f2c18d9ac41639a9e4a496dc954a6 rdf:first Nb07b8867c4644470b096d1bbd0e6c26c
    57 rdf:rest Ndbe6e56f5b8c4874bf3345a819615f5f
    58 N8eecf881a9154d1893aeec73237ee6ea schema:familyName Dontchev
    59 schema:givenName A.
    60 rdf:type schema:Person
    61 N8f7849fc51704118b66975c02be31820 rdf:first N256f3d1055e8420f922ddcd1303cecfd
    62 rdf:rest N5d0f2c18d9ac41639a9e4a496dc954a6
    63 Nb07b8867c4644470b096d1bbd0e6c26c schema:familyName Marti
    64 schema:givenName K.
    65 rdf:type schema:Person
    66 Nb2d7a5311fd84973b278ad7dd30fd31c schema:name readcube_id
    67 schema:value 219bec666262e00d7dd75a735b0f55f1bef22adbaed18551543264bc884bc96d
    68 rdf:type schema:PropertyValue
    69 Ndbe6e56f5b8c4874bf3345a819615f5f rdf:first Ne37e843535a4451f8b430ffe5a394c17
    70 rdf:rest rdf:nil
    71 Ne153c10da04f4d24a2b4ecc2198e3859 rdf:first sg:person.014257010655.09
    72 rdf:rest rdf:nil
    73 Ne37e843535a4451f8b430ffe5a394c17 schema:familyName Pandolfi
    74 schema:givenName L.
    75 rdf:type schema:Person
    76 Ne8e6dcab07f94e4992c7de445657c653 rdf:first N8eecf881a9154d1893aeec73237ee6ea
    77 rdf:rest N8f7849fc51704118b66975c02be31820
    78 Nfb934a8f756842899c04c49acdcf03f5 schema:isbn 0-387-32774-6
    79 schema:name System Modeling and Optimization
    80 rdf:type schema:Book
    81 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
    82 schema:name Mathematical Sciences
    83 rdf:type schema:DefinedTerm
    84 anzsrc-for:0101 schema:inDefinedTermSet anzsrc-for:
    85 schema:name Pure Mathematics
    86 rdf:type schema:DefinedTerm
    87 sg:person.014257010655.09 schema:affiliation https://www.grid.ac/institutes/grid.6530.0
    88 schema:familyName Cannarsa
    89 schema:givenName P.
    90 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014257010655.09
    91 rdf:type schema:Person
    92 sg:pub.10.1007/pl00004605 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001742682
    93 https://doi.org/10.1007/pl00004605
    94 rdf:type schema:CreativeWork
    95 sg:pub.10.1007/s005260100119 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014659694
    96 https://doi.org/10.1007/s005260100119
    97 rdf:type schema:CreativeWork
    98 sg:pub.10.1007/s100350050029 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003376816
    99 https://doi.org/10.1007/s100350050029
    100 rdf:type schema:CreativeWork
    101 https://doi.org/10.1002/cpa.20051 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040872345
    102 rdf:type schema:CreativeWork
    103 https://doi.org/10.1006/jdeq.1996.0166 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028421587
    104 rdf:type schema:CreativeWork
    105 https://doi.org/10.1006/jdeq.1997.3243 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046575476
    106 rdf:type schema:CreativeWork
    107 https://doi.org/10.1016/s0294-1449(97)80140-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022428008
    108 rdf:type schema:CreativeWork
    109 https://doi.org/10.1051/jp1:1996138 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056974370
    110 rdf:type schema:CreativeWork
    111 https://doi.org/10.1090/s0002-9947-00-02564-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000466855
    112 rdf:type schema:CreativeWork
    113 https://doi.org/10.1137/s0363012996311319 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062881304
    114 rdf:type schema:CreativeWork
    115 https://www.grid.ac/institutes/grid.6530.0 schema:alternateName University of Rome Tor Vergata
    116 schema:name Department of Mathematics, University of Rome “Tor Vergata”, Rome, Italy
    117 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...