The NEWUOA software for unconstrained optimization without derivatives View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2006

AUTHORS

M. J. D. Powell

ABSTRACT

The NEWUOA software seeks the least value of a function F(x), x∈R n, when F(x) can be calculated for any vector of variables x. The algorithm is iterative, a quadratic model Q≈F being required at the beginning of each iteration, which is used in a trust region procedure for adjusting the variables. When Q is revised, the new Q interpolates F at m points, the value m = 2n + 1 being recommended. The remaining freedom in the new Q is taken up by minimizing the Frobenius norm of the change to ∇2 Q. Only one interpolation point is altered on each iteration. Thus, except for occasional origin shifts, the amount of work per iteration is only of order (m+n)2, which allows n to be quite large. Many questions were addressed during the development of NEWUOA, for the achievement of good accuracy and robustness. They include the choice of the initial quadratic model, the need to maintain enough linear independence in the interpolation conditions in the presence of computer rounding errors, and the stability of the updating of certain matrices that allow the fast revision of Q. Details are given of the techniques that answer all the questions that occurred. The software was tried on several test problems. Numerical results for nine of them are reported and discussed, in order to demonstrate the performance of the software for up to 160 variables. More... »

PAGES

255-297

References to SciGraph publications

Book

TITLE

Large-Scale Nonlinear Optimization

ISBN

978-0-387-30063-4
978-0-387-30065-8

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-387-30065-1_16

DOI

http://dx.doi.org/10.1007/0-387-30065-1_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029457454


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0803", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Computer Software", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "University of Cambridge", 
          "id": "https://www.grid.ac/institutes/grid.5335.0", 
          "name": [
            "Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, England"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Powell", 
        "givenName": "M. J. D.", 
        "id": "sg:person.07731545105.07", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/comjnl/7.2.149", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002056752"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-003-0490-7", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017676982", 
          "https://doi.org/10.1007/s10107-003-0490-7"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s101070100290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026120726", 
          "https://doi.org/10.1007/s101070100290"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/10556780410001661450", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046631001"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s10107-003-0430-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052549612", 
          "https://doi.org/10.1007/s10107-003-0430-6"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2006", 
    "datePublishedReg": "2006-01-01", 
    "description": "The NEWUOA software seeks the least value of a function F(x), x\u2208R n, when F(x) can be calculated for any vector of variables x. The algorithm is iterative, a quadratic model Q\u2248F being required at the beginning of each iteration, which is used in a trust region procedure for adjusting the variables. When Q is revised, the new Q interpolates F at m points, the value m = 2n + 1 being recommended. The remaining freedom in the new Q is taken up by minimizing the Frobenius norm of the change to \u22072 Q. Only one interpolation point is altered on each iteration. Thus, except for occasional origin shifts, the amount of work per iteration is only of order (m+n)2, which allows n to be quite large. Many questions were addressed during the development of NEWUOA, for the achievement of good accuracy and robustness. They include the choice of the initial quadratic model, the need to maintain enough linear independence in the interpolation conditions in the presence of computer rounding errors, and the stability of the updating of certain matrices that allow the fast revision of Q. Details are given of the techniques that answer all the questions that occurred. The software was tried on several test problems. Numerical results for nine of them are reported and discussed, in order to demonstrate the performance of the software for up to 160 variables.", 
    "editor": [
      {
        "familyName": "Di Pillo", 
        "givenName": "G.", 
        "type": "Person"
      }, 
      {
        "familyName": "Roma", 
        "givenName": "M.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-387-30065-1_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-30063-4", 
        "978-0-387-30065-8"
      ], 
      "name": "Large-Scale Nonlinear Optimization", 
      "type": "Book"
    }, 
    "name": "The NEWUOA software for unconstrained optimization without derivatives", 
    "pagination": "255-297", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-387-30065-1_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8c5490ec2eb7a37c20332a482bfc7092af9a7a1bb0da95ca6d25577c5a4c9a65"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029457454"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-387-30065-1_16", 
      "https://app.dimensions.ai/details/publication/pub.1029457454"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T13:28", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8664_00000261.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/0-387-30065-1_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-387-30065-1_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-387-30065-1_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-387-30065-1_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-387-30065-1_16'


 

This table displays all metadata directly associated to this object as RDF triples.

88 TRIPLES      23 PREDICATES      32 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-387-30065-1_16 schema:about anzsrc-for:08
2 anzsrc-for:0803
3 schema:author N7018e01c607d47d0b950c73d479d3a94
4 schema:citation sg:pub.10.1007/s10107-003-0430-6
5 sg:pub.10.1007/s10107-003-0490-7
6 sg:pub.10.1007/s101070100290
7 https://doi.org/10.1080/10556780410001661450
8 https://doi.org/10.1093/comjnl/7.2.149
9 schema:datePublished 2006
10 schema:datePublishedReg 2006-01-01
11 schema:description The NEWUOA software seeks the least value of a function F(x), x∈R n, when F(x) can be calculated for any vector of variables x. The algorithm is iterative, a quadratic model Q≈F being required at the beginning of each iteration, which is used in a trust region procedure for adjusting the variables. When Q is revised, the new Q interpolates F at m points, the value m = 2n + 1 being recommended. The remaining freedom in the new Q is taken up by minimizing the Frobenius norm of the change to ∇2 Q. Only one interpolation point is altered on each iteration. Thus, except for occasional origin shifts, the amount of work per iteration is only of order (m+n)2, which allows n to be quite large. Many questions were addressed during the development of NEWUOA, for the achievement of good accuracy and robustness. They include the choice of the initial quadratic model, the need to maintain enough linear independence in the interpolation conditions in the presence of computer rounding errors, and the stability of the updating of certain matrices that allow the fast revision of Q. Details are given of the techniques that answer all the questions that occurred. The software was tried on several test problems. Numerical results for nine of them are reported and discussed, in order to demonstrate the performance of the software for up to 160 variables.
12 schema:editor N3061116caae8470fb7c053bd80151c5e
13 schema:genre chapter
14 schema:inLanguage en
15 schema:isAccessibleForFree false
16 schema:isPartOf Nb24aa7313afb4580bc207f2e7e6547ea
17 schema:name The NEWUOA software for unconstrained optimization without derivatives
18 schema:pagination 255-297
19 schema:productId Nc98d78fe55684635bce9d07f436a9bad
20 Nf4da38cab8a34f16a5df2cf82945eb81
21 Nfef08f5241e94c2a83229761285e42b9
22 schema:publisher N8fd587a09d3f460a9e1eb0478c669169
23 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029457454
24 https://doi.org/10.1007/0-387-30065-1_16
25 schema:sdDatePublished 2019-04-15T13:28
26 schema:sdLicense https://scigraph.springernature.com/explorer/license/
27 schema:sdPublisher Nb40f1133d0a049bea56573cba33e57b4
28 schema:url http://link.springer.com/10.1007/0-387-30065-1_16
29 sgo:license sg:explorer/license/
30 sgo:sdDataset chapters
31 rdf:type schema:Chapter
32 N2758d34cf4a84eee92ba040b34a67af9 schema:familyName Di Pillo
33 schema:givenName G.
34 rdf:type schema:Person
35 N3061116caae8470fb7c053bd80151c5e rdf:first N2758d34cf4a84eee92ba040b34a67af9
36 rdf:rest Ne7238dc4fc5a4225ad6f1d3bc22cef00
37 N7018e01c607d47d0b950c73d479d3a94 rdf:first sg:person.07731545105.07
38 rdf:rest rdf:nil
39 N8fd587a09d3f460a9e1eb0478c669169 schema:location Boston, MA
40 schema:name Springer US
41 rdf:type schema:Organisation
42 Nb24aa7313afb4580bc207f2e7e6547ea schema:isbn 978-0-387-30063-4
43 978-0-387-30065-8
44 schema:name Large-Scale Nonlinear Optimization
45 rdf:type schema:Book
46 Nb40f1133d0a049bea56573cba33e57b4 schema:name Springer Nature - SN SciGraph project
47 rdf:type schema:Organization
48 Nb8ac86faef464f2286ab3c07b4dc29fc schema:familyName Roma
49 schema:givenName M.
50 rdf:type schema:Person
51 Nc98d78fe55684635bce9d07f436a9bad schema:name dimensions_id
52 schema:value pub.1029457454
53 rdf:type schema:PropertyValue
54 Ne7238dc4fc5a4225ad6f1d3bc22cef00 rdf:first Nb8ac86faef464f2286ab3c07b4dc29fc
55 rdf:rest rdf:nil
56 Nf4da38cab8a34f16a5df2cf82945eb81 schema:name doi
57 schema:value 10.1007/0-387-30065-1_16
58 rdf:type schema:PropertyValue
59 Nfef08f5241e94c2a83229761285e42b9 schema:name readcube_id
60 schema:value 8c5490ec2eb7a37c20332a482bfc7092af9a7a1bb0da95ca6d25577c5a4c9a65
61 rdf:type schema:PropertyValue
62 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
63 schema:name Information and Computing Sciences
64 rdf:type schema:DefinedTerm
65 anzsrc-for:0803 schema:inDefinedTermSet anzsrc-for:
66 schema:name Computer Software
67 rdf:type schema:DefinedTerm
68 sg:person.07731545105.07 schema:affiliation https://www.grid.ac/institutes/grid.5335.0
69 schema:familyName Powell
70 schema:givenName M. J. D.
71 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07731545105.07
72 rdf:type schema:Person
73 sg:pub.10.1007/s10107-003-0430-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1052549612
74 https://doi.org/10.1007/s10107-003-0430-6
75 rdf:type schema:CreativeWork
76 sg:pub.10.1007/s10107-003-0490-7 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017676982
77 https://doi.org/10.1007/s10107-003-0490-7
78 rdf:type schema:CreativeWork
79 sg:pub.10.1007/s101070100290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026120726
80 https://doi.org/10.1007/s101070100290
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1080/10556780410001661450 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046631001
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1093/comjnl/7.2.149 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002056752
85 rdf:type schema:CreativeWork
86 https://www.grid.ac/institutes/grid.5335.0 schema:alternateName University of Cambridge
87 schema:name Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 0WA, England
88 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...