limma: Linear Models for Microarray Data View Full Text


Ontology type: schema:Chapter      Open Access: True


Chapter Info

DATE

2005-01-01

AUTHORS

G. K. Smyth

ABSTRACT

A survey is given of differential expression analyses using the linear modeling features of the limma package. The chapter starts with the simplest replicated designs and progresses through experiments with two or more groups, direct designs, factorial designs and time course experiments. Experiments with technical as well as biological replication are considered. Empirical Bayes test statistics are explained. The use of quality weights, adaptive background correction and control spots in conjunction with linear modelling is illustrated on the β7 data. More... »

PAGES

397-420

Book

TITLE

Bioinformatics and Computational Biology Solutions Using R and Bioconductor

ISBN

978-0-387-25146-2
978-0-387-29362-2

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-387-29362-0_23

DOI

http://dx.doi.org/10.1007/0-387-29362-0_23

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1025432622


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0104", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Statistics", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Smyth", 
        "givenName": "G. K.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-01-01", 
    "datePublishedReg": "2005-01-01", 
    "description": "A survey is given of differential expression analyses using the linear modeling features of the limma package. The chapter starts with the simplest replicated designs and progresses through experiments with two or more groups, direct designs, factorial designs and time course experiments. Experiments with technical as well as biological replication are considered. Empirical Bayes test statistics are explained. The use of quality weights, adaptive background correction and control spots in conjunction with linear modelling is illustrated on the \u03b27 data.", 
    "editor": [
      {
        "familyName": "Gentleman", 
        "givenName": "Robert", 
        "type": "Person"
      }, 
      {
        "familyName": "Carey", 
        "givenName": "Vincent J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Huber", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }, 
      {
        "familyName": "Irizarry", 
        "givenName": "Rafael A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Dudoit", 
        "givenName": "Sandrine", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-387-29362-0_23", 
    "isAccessibleForFree": true, 
    "isPartOf": {
      "isbn": [
        "978-0-387-25146-2", 
        "978-0-387-29362-2"
      ], 
      "name": "Bioinformatics and Computational Biology Solutions Using R and Bioconductor", 
      "type": "Book"
    }, 
    "keywords": [
      "test statistic", 
      "direct design", 
      "linear model", 
      "modeling features", 
      "quality weights", 
      "biological replication", 
      "more groups", 
      "linear modelling", 
      "microarray data", 
      "control spots", 
      "statistics", 
      "replicated design", 
      "modelling", 
      "differential expression analysis", 
      "background correction", 
      "design", 
      "model", 
      "experiments", 
      "package", 
      "correction", 
      "data", 
      "conjunction", 
      "factorial design", 
      "features", 
      "analysis", 
      "chapter", 
      "spots", 
      "use", 
      "weight", 
      "survey", 
      "group", 
      "time-course experiments", 
      "course experiments", 
      "replication", 
      "expression analysis", 
      "limma package"
    ], 
    "name": "limma: Linear Models for Microarray Data", 
    "pagination": "397-420", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1025432622"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-387-29362-0_23"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-387-29362-0_23", 
      "https://app.dimensions.ai/details/publication/pub.1025432622"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-11-24T21:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221124/entities/gbq_results/chapter/chapter_305.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/0-387-29362-0_23"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-387-29362-0_23'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-387-29362-0_23'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-387-29362-0_23'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-387-29362-0_23'


 

This table displays all metadata directly associated to this object as RDF triples.

110 TRIPLES      22 PREDICATES      59 URIs      52 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-387-29362-0_23 schema:about anzsrc-for:01
2 anzsrc-for:0104
3 schema:author Neae64245e024491195eb8ce4a2c14ddb
4 schema:datePublished 2005-01-01
5 schema:datePublishedReg 2005-01-01
6 schema:description A survey is given of differential expression analyses using the linear modeling features of the limma package. The chapter starts with the simplest replicated designs and progresses through experiments with two or more groups, direct designs, factorial designs and time course experiments. Experiments with technical as well as biological replication are considered. Empirical Bayes test statistics are explained. The use of quality weights, adaptive background correction and control spots in conjunction with linear modelling is illustrated on the β7 data.
7 schema:editor N8f15173fce77443fb5ea400971dd9718
8 schema:genre chapter
9 schema:isAccessibleForFree true
10 schema:isPartOf N10b80584b7ea4b7cbc7d097732a83e4a
11 schema:keywords analysis
12 background correction
13 biological replication
14 chapter
15 conjunction
16 control spots
17 correction
18 course experiments
19 data
20 design
21 differential expression analysis
22 direct design
23 experiments
24 expression analysis
25 factorial design
26 features
27 group
28 limma package
29 linear model
30 linear modelling
31 microarray data
32 model
33 modeling features
34 modelling
35 more groups
36 package
37 quality weights
38 replicated design
39 replication
40 spots
41 statistics
42 survey
43 test statistic
44 time-course experiments
45 use
46 weight
47 schema:name limma: Linear Models for Microarray Data
48 schema:pagination 397-420
49 schema:productId N2cbaaeeb84074b6182f0aceb8646a513
50 N4d30cdedbbfd45158f4e0d0a5452289f
51 schema:publisher N33223402c8754996b16f0bfec56f616a
52 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025432622
53 https://doi.org/10.1007/0-387-29362-0_23
54 schema:sdDatePublished 2022-11-24T21:15
55 schema:sdLicense https://scigraph.springernature.com/explorer/license/
56 schema:sdPublisher N542759d6817241baa7c3f5493160ae51
57 schema:url https://doi.org/10.1007/0-387-29362-0_23
58 sgo:license sg:explorer/license/
59 sgo:sdDataset chapters
60 rdf:type schema:Chapter
61 N0f3be056b40f4e61a846b3e86e5e5729 rdf:first N25cbe98ba2924b8eb06fa3b994e0cfda
62 rdf:rest N7d76136c673542c68e7577be1f61d158
63 N10b80584b7ea4b7cbc7d097732a83e4a schema:isbn 978-0-387-25146-2
64 978-0-387-29362-2
65 schema:name Bioinformatics and Computational Biology Solutions Using R and Bioconductor
66 rdf:type schema:Book
67 N1cfaf9273cab49f68e824f2f442e8d28 schema:familyName Dudoit
68 schema:givenName Sandrine
69 rdf:type schema:Person
70 N25cbe98ba2924b8eb06fa3b994e0cfda schema:familyName Carey
71 schema:givenName Vincent J.
72 rdf:type schema:Person
73 N2cbaaeeb84074b6182f0aceb8646a513 schema:name dimensions_id
74 schema:value pub.1025432622
75 rdf:type schema:PropertyValue
76 N33223402c8754996b16f0bfec56f616a schema:name Springer Nature
77 rdf:type schema:Organisation
78 N4d30cdedbbfd45158f4e0d0a5452289f schema:name doi
79 schema:value 10.1007/0-387-29362-0_23
80 rdf:type schema:PropertyValue
81 N542759d6817241baa7c3f5493160ae51 schema:name Springer Nature - SN SciGraph project
82 rdf:type schema:Organization
83 N7b55ea08060b4d6c847e6031f95e5b5c schema:familyName Huber
84 schema:givenName Wolfgang
85 rdf:type schema:Person
86 N7d76136c673542c68e7577be1f61d158 rdf:first N7b55ea08060b4d6c847e6031f95e5b5c
87 rdf:rest Nd1c7545fd5074d87aa5d0868e7815677
88 N8f15173fce77443fb5ea400971dd9718 rdf:first Ne9922628be654f679977fdf256b50894
89 rdf:rest N0f3be056b40f4e61a846b3e86e5e5729
90 Na99ec17b08624836bd3652110a2ccca7 schema:familyName Smyth
91 schema:givenName G. K.
92 rdf:type schema:Person
93 Nd1c7545fd5074d87aa5d0868e7815677 rdf:first Ne616316a968a4a0086a5a4be5a29261f
94 rdf:rest Nf78308bc27634e239fb003eabb92e556
95 Ne616316a968a4a0086a5a4be5a29261f schema:familyName Irizarry
96 schema:givenName Rafael A.
97 rdf:type schema:Person
98 Ne9922628be654f679977fdf256b50894 schema:familyName Gentleman
99 schema:givenName Robert
100 rdf:type schema:Person
101 Neae64245e024491195eb8ce4a2c14ddb rdf:first Na99ec17b08624836bd3652110a2ccca7
102 rdf:rest rdf:nil
103 Nf78308bc27634e239fb003eabb92e556 rdf:first N1cfaf9273cab49f68e824f2f442e8d28
104 rdf:rest rdf:nil
105 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
106 schema:name Mathematical Sciences
107 rdf:type schema:DefinedTerm
108 anzsrc-for:0104 schema:inDefinedTermSet anzsrc-for:
109 schema:name Statistics
110 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...