Machine Learning Concepts and Tools for Statistical Genomics View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005

AUTHORS

V. J. Carey

ABSTRACT

In this chapter, supervised machine learning methods are described in the context of microarray applications. The most widely used families of machine learning methods are described, along with various approaches to learner assessment. The Bioconductor interfaces to machine learning tools are described and illustrated. Key problems of model selection and interpretation are reviewed in examples. More... »

PAGES

273-292

Book

TITLE

Bioinformatics and Computational Biology Solutions Using R and Bioconductor

ISBN

0-387-25146-4

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-387-29362-0_16

DOI

http://dx.doi.org/10.1007/0-387-29362-0_16

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1031148058


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Carey", 
        "givenName": "V. J.", 
        "type": "Person"
      }
    ], 
    "datePublished": "2005", 
    "datePublishedReg": "2005-01-01", 
    "description": "In this chapter, supervised machine learning methods are described in the context of microarray applications. The most widely used families of machine learning methods are described, along with various approaches to learner assessment. The Bioconductor interfaces to machine learning tools are described and illustrated. Key problems of model selection and interpretation are reviewed in examples.", 
    "editor": [
      {
        "familyName": "Gentleman", 
        "givenName": "Robert", 
        "type": "Person"
      }, 
      {
        "familyName": "Carey", 
        "givenName": "Vincent J.", 
        "type": "Person"
      }, 
      {
        "familyName": "Huber", 
        "givenName": "Wolfgang", 
        "type": "Person"
      }, 
      {
        "familyName": "Irizarry", 
        "givenName": "Rafael A.", 
        "type": "Person"
      }, 
      {
        "familyName": "Dudoit", 
        "givenName": "Sandrine", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-387-29362-0_16", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "0-387-25146-4"
      ], 
      "name": "Bioinformatics and Computational Biology Solutions Using R and Bioconductor", 
      "type": "Book"
    }, 
    "name": "Machine Learning Concepts and Tools for Statistical Genomics", 
    "pagination": "273-292", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-387-29362-0_16"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9462e4c4162d84fcbbc246b2c76660f10dfe7d562a56e993c33b5cdcfdd23a12"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1031148058"
        ]
      }
    ], 
    "publisher": {
      "location": "New York", 
      "name": "Springer-Verlag", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-387-29362-0_16", 
      "https://app.dimensions.ai/details/publication/pub.1031148058"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:04", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000053.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/0-387-29362-0_16"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-387-29362-0_16'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-387-29362-0_16'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-387-29362-0_16'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-387-29362-0_16'


 

This table displays all metadata directly associated to this object as RDF triples.

79 TRIPLES      22 PREDICATES      27 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-387-29362-0_16 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nba655c133c86412caeda3eee82a7bb1e
4 schema:datePublished 2005
5 schema:datePublishedReg 2005-01-01
6 schema:description In this chapter, supervised machine learning methods are described in the context of microarray applications. The most widely used families of machine learning methods are described, along with various approaches to learner assessment. The Bioconductor interfaces to machine learning tools are described and illustrated. Key problems of model selection and interpretation are reviewed in examples.
7 schema:editor N7b318a7bbc0a413f96c3edea72bcec8c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N426af63a4f314019966568b10e0dd62e
12 schema:name Machine Learning Concepts and Tools for Statistical Genomics
13 schema:pagination 273-292
14 schema:productId N09da4c4d55484ac6bb68fd25cfe976d8
15 N46ea1b8deff14b79840328792199e14e
16 Na17ecd901bbb40598dabf359c6014714
17 schema:publisher N1df8fac405c9456d8fee05c3de18de2e
18 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031148058
19 https://doi.org/10.1007/0-387-29362-0_16
20 schema:sdDatePublished 2019-04-15T16:04
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher N957be3d1b8b74b739c72d040d9caa494
23 schema:url http://link.springer.com/10.1007/0-387-29362-0_16
24 sgo:license sg:explorer/license/
25 sgo:sdDataset chapters
26 rdf:type schema:Chapter
27 N09da4c4d55484ac6bb68fd25cfe976d8 schema:name dimensions_id
28 schema:value pub.1031148058
29 rdf:type schema:PropertyValue
30 N1df8fac405c9456d8fee05c3de18de2e schema:location New York
31 schema:name Springer-Verlag
32 rdf:type schema:Organisation
33 N280e4378f5a04f6d97b72eec49fc568f schema:familyName Huber
34 schema:givenName Wolfgang
35 rdf:type schema:Person
36 N3a8ada08d4f240b68da7d95296f4c855 schema:familyName Irizarry
37 schema:givenName Rafael A.
38 rdf:type schema:Person
39 N426af63a4f314019966568b10e0dd62e schema:isbn 0-387-25146-4
40 schema:name Bioinformatics and Computational Biology Solutions Using R and Bioconductor
41 rdf:type schema:Book
42 N46ea1b8deff14b79840328792199e14e schema:name readcube_id
43 schema:value 9462e4c4162d84fcbbc246b2c76660f10dfe7d562a56e993c33b5cdcfdd23a12
44 rdf:type schema:PropertyValue
45 N533030298e0743028a1128081b9e73bc schema:familyName Carey
46 schema:givenName Vincent J.
47 rdf:type schema:Person
48 N5d20207f5ea74e2a953c209e774b8a20 schema:familyName Dudoit
49 schema:givenName Sandrine
50 rdf:type schema:Person
51 N7b318a7bbc0a413f96c3edea72bcec8c rdf:first Nec69c7de23b848da9a555d0db243296b
52 rdf:rest Neefd2dfc88db402088d4fbb33c66f0b3
53 N957be3d1b8b74b739c72d040d9caa494 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 Na17ecd901bbb40598dabf359c6014714 schema:name doi
56 schema:value 10.1007/0-387-29362-0_16
57 rdf:type schema:PropertyValue
58 Nb0afd6e8ecd042beaca331d70df4ad43 rdf:first N3a8ada08d4f240b68da7d95296f4c855
59 rdf:rest Ncb407ec8753d48a28ead8d32bbd6aebf
60 Nb3ad911b482146419044f4252d37dbb5 schema:familyName Carey
61 schema:givenName V. J.
62 rdf:type schema:Person
63 Nba655c133c86412caeda3eee82a7bb1e rdf:first Nb3ad911b482146419044f4252d37dbb5
64 rdf:rest rdf:nil
65 Nc400f88e68e84a6d829c4fd9c79dd85b rdf:first N280e4378f5a04f6d97b72eec49fc568f
66 rdf:rest Nb0afd6e8ecd042beaca331d70df4ad43
67 Ncb407ec8753d48a28ead8d32bbd6aebf rdf:first N5d20207f5ea74e2a953c209e774b8a20
68 rdf:rest rdf:nil
69 Nec69c7de23b848da9a555d0db243296b schema:familyName Gentleman
70 schema:givenName Robert
71 rdf:type schema:Person
72 Neefd2dfc88db402088d4fbb33c66f0b3 rdf:first N533030298e0743028a1128081b9e73bc
73 rdf:rest Nc400f88e68e84a6d829c4fd9c79dd85b
74 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
75 schema:name Information and Computing Sciences
76 rdf:type schema:DefinedTerm
77 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
78 schema:name Artificial Intelligence and Image Processing
79 rdf:type schema:DefinedTerm
 




Preview window. Press ESC to close (or click here)


...