Role of the Spine Apparatus in Synaptic Plasticity View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2005-01-01

AUTHORS

Michael Frotscher , Thomas Deller

ABSTRACT

7. Conclusions and OutlookThe studies reviewed here have shown that the lack of a spine apparatus in synaptopodin-deficient mice is accompanied by changes in synaptic plasticity which are relevant for spatial learning. As pointed out at several places, further detailed analysis of synaptopodin-deficient mice is needed to better understand the role of synaptopodin in the formation and function of the spine apparatus and to determine to what extent compensatory changes due to the deletion of synaptopodin are involved. So far, we have established a role for synaptopodin in LTP at Schaffer collateral synapses in CA1. Numerous studies have shown that different mechanisms underlie LTP in CA3 which remains to be studied in synaptopodin-deficient mice. Along this line, we have not yet looked at long-term depression (LTD) in synaptopodin-deficient mice. LTD is a form of synaptic plasticity that is regularly observed in Purkinje cells while LTP can hardly be induced in these neurons. Wildtype Purkinje cells do not express synaptopodin and lack a spine apparatus. Can we change synaptic plasticity in these neurons by transfecting them with synaptopodin cDNA? Can transfection of hippocampal neurons from synaptopodin mutants rescue LTP and the formation of spine apparatuses? We are convinced that further analysis of synaptopodin-deficient mice will allow us to learn more about the function of an interesting protein and a characteristic organelle in dendritic spines of the cerebral cortex. More... »

PAGES

519-528

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-387-25443-9_29

DOI

http://dx.doi.org/10.1007/0-387-25443-9_29

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1037882621


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/11", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Medical and Health Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/1109", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Neurosciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Institute of Anatomy and Cell Biology, University of Freiburg, D-79104, Freiburg, Germany", 
          "id": "http://www.grid.ac/institutes/grid.5963.9", 
          "name": [
            "Institute of Anatomy and Cell Biology, University of Freiburg, D-79104, Freiburg, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Frotscher", 
        "givenName": "Michael", 
        "id": "sg:person.0663133375.20", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663133375.20"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Clinical Neuroanatomy, J.W. Goethe University, D-60590, Frankfurt/Main, Germany", 
          "id": "http://www.grid.ac/institutes/grid.7839.5", 
          "name": [
            "Department of Clinical Neuroanatomy, J.W. Goethe University, D-60590, Frankfurt/Main, Germany"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Deller", 
        "givenName": "Thomas", 
        "id": "sg:person.01125311260.54", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125311260.54"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2005-01-01", 
    "datePublishedReg": "2005-01-01", 
    "description": "7. Conclusions and OutlookThe studies reviewed here have shown that the lack of a spine apparatus in synaptopodin-deficient mice is accompanied by changes in synaptic plasticity which are relevant for spatial learning. As pointed out at several places, further detailed analysis of synaptopodin-deficient mice is needed to better understand the role of synaptopodin in the formation and function of the spine apparatus and to determine to what extent compensatory changes due to the deletion of synaptopodin are involved. So far, we have established a role for synaptopodin in LTP at Schaffer collateral synapses in CA1. Numerous studies have shown that different mechanisms underlie LTP in CA3 which remains to be studied in synaptopodin-deficient mice. Along this line, we have not yet looked at long-term depression (LTD) in synaptopodin-deficient mice. LTD is a form of synaptic plasticity that is regularly observed in Purkinje cells while LTP can hardly be induced in these neurons. Wildtype Purkinje cells do not express synaptopodin and lack a spine apparatus. Can we change synaptic plasticity in these neurons by transfecting them with synaptopodin cDNA? Can transfection of hippocampal neurons from synaptopodin mutants rescue LTP and the formation of spine apparatuses? We are convinced that further analysis of synaptopodin-deficient mice will allow us to learn more about the function of an interesting protein and a characteristic organelle in dendritic spines of the cerebral cortex.", 
    "editor": [
      {
        "familyName": "Stanton", 
        "givenName": "Patrick K.", 
        "type": "Person"
      }, 
      {
        "familyName": "Bramham", 
        "givenName": "Clive", 
        "type": "Person"
      }, 
      {
        "familyName": "Scharfman", 
        "givenName": "Helen E.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-387-25443-9_29", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-24008-4", 
        "978-0-387-25443-2"
      ], 
      "name": "Synaptic Plasticity and Transsynaptic Signaling", 
      "type": "Book"
    }, 
    "keywords": [
      "synaptopodin-deficient mice", 
      "long-term depression", 
      "spine apparatus", 
      "synaptic plasticity", 
      "Purkinje cells", 
      "Schaffer collateral synapses", 
      "role of synaptopodin", 
      "collateral synapses", 
      "cerebral cortex", 
      "hippocampal neurons", 
      "dendritic spines", 
      "mice", 
      "spatial learning", 
      "compensatory changes", 
      "synaptopodin", 
      "neurons", 
      "LTP", 
      "numerous studies", 
      "different mechanisms", 
      "cells", 
      "plasticity", 
      "CA1", 
      "characteristic organelles", 
      "CA3", 
      "cortex", 
      "synapses", 
      "spine", 
      "role", 
      "depression", 
      "Further analysis", 
      "study", 
      "conclusion", 
      "transfection", 
      "changes", 
      "interesting proteins", 
      "function", 
      "deletion", 
      "protein", 
      "lack", 
      "analysis", 
      "mechanism", 
      "cDNA", 
      "organelles", 
      "lines", 
      "apparatus", 
      "formation", 
      "form", 
      "detailed analysis", 
      "place", 
      "learning"
    ], 
    "name": "Role of the Spine Apparatus in Synaptic Plasticity", 
    "pagination": "519-528", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1037882621"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-387-25443-9_29"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-387-25443-9_29", 
      "https://app.dimensions.ai/details/publication/pub.1037882621"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:46", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_310.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/0-387-25443-9_29"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-387-25443-9_29'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-387-25443-9_29'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-387-25443-9_29'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-387-25443-9_29'


 

This table displays all metadata directly associated to this object as RDF triples.

130 TRIPLES      23 PREDICATES      75 URIs      68 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-387-25443-9_29 schema:about anzsrc-for:11
2 anzsrc-for:1109
3 schema:author Nb9add1fa264940b89fc79dbd93fffb30
4 schema:datePublished 2005-01-01
5 schema:datePublishedReg 2005-01-01
6 schema:description 7. Conclusions and OutlookThe studies reviewed here have shown that the lack of a spine apparatus in synaptopodin-deficient mice is accompanied by changes in synaptic plasticity which are relevant for spatial learning. As pointed out at several places, further detailed analysis of synaptopodin-deficient mice is needed to better understand the role of synaptopodin in the formation and function of the spine apparatus and to determine to what extent compensatory changes due to the deletion of synaptopodin are involved. So far, we have established a role for synaptopodin in LTP at Schaffer collateral synapses in CA1. Numerous studies have shown that different mechanisms underlie LTP in CA3 which remains to be studied in synaptopodin-deficient mice. Along this line, we have not yet looked at long-term depression (LTD) in synaptopodin-deficient mice. LTD is a form of synaptic plasticity that is regularly observed in Purkinje cells while LTP can hardly be induced in these neurons. Wildtype Purkinje cells do not express synaptopodin and lack a spine apparatus. Can we change synaptic plasticity in these neurons by transfecting them with synaptopodin cDNA? Can transfection of hippocampal neurons from synaptopodin mutants rescue LTP and the formation of spine apparatuses? We are convinced that further analysis of synaptopodin-deficient mice will allow us to learn more about the function of an interesting protein and a characteristic organelle in dendritic spines of the cerebral cortex.
7 schema:editor N49bf99e5d2c7478182bdc06db781098f
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N00cdb0f2dc7c4d6683aee308a465becd
12 schema:keywords CA1
13 CA3
14 Further analysis
15 LTP
16 Purkinje cells
17 Schaffer collateral synapses
18 analysis
19 apparatus
20 cDNA
21 cells
22 cerebral cortex
23 changes
24 characteristic organelles
25 collateral synapses
26 compensatory changes
27 conclusion
28 cortex
29 deletion
30 dendritic spines
31 depression
32 detailed analysis
33 different mechanisms
34 form
35 formation
36 function
37 hippocampal neurons
38 interesting proteins
39 lack
40 learning
41 lines
42 long-term depression
43 mechanism
44 mice
45 neurons
46 numerous studies
47 organelles
48 place
49 plasticity
50 protein
51 role
52 role of synaptopodin
53 spatial learning
54 spine
55 spine apparatus
56 study
57 synapses
58 synaptic plasticity
59 synaptopodin
60 synaptopodin-deficient mice
61 transfection
62 schema:name Role of the Spine Apparatus in Synaptic Plasticity
63 schema:pagination 519-528
64 schema:productId N534a310b35ed4fcba785ea9808aebf17
65 Nc07af6c046df4f90afc63fce7fc665a1
66 schema:publisher Necef4156106043759e85d652b695a608
67 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037882621
68 https://doi.org/10.1007/0-387-25443-9_29
69 schema:sdDatePublished 2022-05-10T10:46
70 schema:sdLicense https://scigraph.springernature.com/explorer/license/
71 schema:sdPublisher Nc5348ac88c854e0fbe5e7e539365e7f9
72 schema:url https://doi.org/10.1007/0-387-25443-9_29
73 sgo:license sg:explorer/license/
74 sgo:sdDataset chapters
75 rdf:type schema:Chapter
76 N00cdb0f2dc7c4d6683aee308a465becd schema:isbn 978-0-387-24008-4
77 978-0-387-25443-2
78 schema:name Synaptic Plasticity and Transsynaptic Signaling
79 rdf:type schema:Book
80 N14b8180ad186406e874bce8c58c8757f schema:familyName Bramham
81 schema:givenName Clive
82 rdf:type schema:Person
83 N486cb9f777664280b65f231441668cc4 schema:familyName Stanton
84 schema:givenName Patrick K.
85 rdf:type schema:Person
86 N49bf99e5d2c7478182bdc06db781098f rdf:first N486cb9f777664280b65f231441668cc4
87 rdf:rest N61b89ad8ee4e40499b5cb839b04eed07
88 N534a310b35ed4fcba785ea9808aebf17 schema:name doi
89 schema:value 10.1007/0-387-25443-9_29
90 rdf:type schema:PropertyValue
91 N618b2354b7b247aebc705e7d02ee9397 rdf:first sg:person.01125311260.54
92 rdf:rest rdf:nil
93 N61b89ad8ee4e40499b5cb839b04eed07 rdf:first N14b8180ad186406e874bce8c58c8757f
94 rdf:rest Nc9c7b1e289b6446b91fa5f22b1ef6df4
95 Nb9add1fa264940b89fc79dbd93fffb30 rdf:first sg:person.0663133375.20
96 rdf:rest N618b2354b7b247aebc705e7d02ee9397
97 Nc07af6c046df4f90afc63fce7fc665a1 schema:name dimensions_id
98 schema:value pub.1037882621
99 rdf:type schema:PropertyValue
100 Nc5348ac88c854e0fbe5e7e539365e7f9 schema:name Springer Nature - SN SciGraph project
101 rdf:type schema:Organization
102 Nc9c7b1e289b6446b91fa5f22b1ef6df4 rdf:first Ne06b84266c114819834b0402d25f3b0c
103 rdf:rest rdf:nil
104 Ne06b84266c114819834b0402d25f3b0c schema:familyName Scharfman
105 schema:givenName Helen E.
106 rdf:type schema:Person
107 Necef4156106043759e85d652b695a608 schema:name Springer Nature
108 rdf:type schema:Organisation
109 anzsrc-for:11 schema:inDefinedTermSet anzsrc-for:
110 schema:name Medical and Health Sciences
111 rdf:type schema:DefinedTerm
112 anzsrc-for:1109 schema:inDefinedTermSet anzsrc-for:
113 schema:name Neurosciences
114 rdf:type schema:DefinedTerm
115 sg:person.01125311260.54 schema:affiliation grid-institutes:grid.7839.5
116 schema:familyName Deller
117 schema:givenName Thomas
118 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01125311260.54
119 rdf:type schema:Person
120 sg:person.0663133375.20 schema:affiliation grid-institutes:grid.5963.9
121 schema:familyName Frotscher
122 schema:givenName Michael
123 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0663133375.20
124 rdf:type schema:Person
125 grid-institutes:grid.5963.9 schema:alternateName Institute of Anatomy and Cell Biology, University of Freiburg, D-79104, Freiburg, Germany
126 schema:name Institute of Anatomy and Cell Biology, University of Freiburg, D-79104, Freiburg, Germany
127 rdf:type schema:Organization
128 grid-institutes:grid.7839.5 schema:alternateName Department of Clinical Neuroanatomy, J.W. Goethe University, D-60590, Frankfurt/Main, Germany
129 schema:name Department of Clinical Neuroanatomy, J.W. Goethe University, D-60590, Frankfurt/Main, Germany
130 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...