Deformable Models: Classic, Topology-Adaptive and Generalized Formulations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-01-01

AUTHORS

Demetri Terzopoulos

ABSTRACT

“Deformable models” refers to a class of physics-based modeling methods with an extensive track record in computer vision, medical imaging, computer graphics, geometric design, and related areas. Unlike the Eulerian (fluid) formulations associated with level set methods, deformable models are characterized by Lagrangian (solid) formulations, three variants of which are reviewed herein. More... »

PAGES

21-40

Book

TITLE

Geometric Level Set Methods in Imaging, Vision, and Graphics

ISBN

978-0-387-95488-2
978-0-387-21810-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-387-21810-6_2

DOI

http://dx.doi.org/10.1007/0-387-21810-6_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010408889


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Terzopoulos", 
        "givenName": "Demetri", 
        "id": "sg:person.016347323445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-01-01", 
    "datePublishedReg": "2003-01-01", 
    "description": "Abstract\u201cDeformable models\u201d refers to a class of physics-based modeling methods with an extensive track record in computer vision, medical imaging, computer graphics, geometric design, and related areas. Unlike the Eulerian (fluid) formulations associated with level set methods, deformable models are characterized by Lagrangian (solid) formulations, three variants of which are reviewed herein.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-387-21810-6_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-95488-2", 
        "978-0-387-21810-6"
      ], 
      "name": "Geometric Level Set Methods in Imaging, Vision, and Graphics", 
      "type": "Book"
    }, 
    "keywords": [
      "computer vision", 
      "computer graphics", 
      "deformable model", 
      "medical imaging", 
      "physics-based modeling method", 
      "modeling method", 
      "related areas", 
      "geometric design", 
      "graphics", 
      "vision", 
      "Lagrangian formulation", 
      "generalized formulation", 
      "method", 
      "model", 
      "Eulerian formulation", 
      "design", 
      "track record", 
      "formulation", 
      "class", 
      "records", 
      "variants", 
      "area", 
      "imaging", 
      "levels", 
      "classic", 
      "extensive track record", 
      "Topology-Adaptive"
    ], 
    "name": "Deformable Models: Classic, Topology-Adaptive and Generalized Formulations", 
    "pagination": "21-40", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010408889"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-387-21810-6_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-387-21810-6_2", 
      "https://app.dimensions.ai/details/publication/pub.1010408889"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:23", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_404.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/0-387-21810-6_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-387-21810-6_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-387-21810-6_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-387-21810-6_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-387-21810-6_2'


 

This table displays all metadata directly associated to this object as RDF triples.

77 TRIPLES      22 PREDICATES      51 URIs      44 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-387-21810-6_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author Nd336c6ebb39c46d2b10bedbaaa260a0c
4 schema:datePublished 2003-01-01
5 schema:datePublishedReg 2003-01-01
6 schema:description Abstract“Deformable models” refers to a class of physics-based modeling methods with an extensive track record in computer vision, medical imaging, computer graphics, geometric design, and related areas. Unlike the Eulerian (fluid) formulations associated with level set methods, deformable models are characterized by Lagrangian (solid) formulations, three variants of which are reviewed herein.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf Nab8e6058b061445d938a6db6c47b62d8
11 schema:keywords Eulerian formulation
12 Lagrangian formulation
13 Topology-Adaptive
14 area
15 class
16 classic
17 computer graphics
18 computer vision
19 deformable model
20 design
21 extensive track record
22 formulation
23 generalized formulation
24 geometric design
25 graphics
26 imaging
27 levels
28 medical imaging
29 method
30 model
31 modeling method
32 physics-based modeling method
33 records
34 related areas
35 track record
36 variants
37 vision
38 schema:name Deformable Models: Classic, Topology-Adaptive and Generalized Formulations
39 schema:pagination 21-40
40 schema:productId N4aaff68909b44562b4be1e06fe7dd4b0
41 Na9331cf1639845299428d50dd547da47
42 schema:publisher N24a6f453c32c42f3925f5b655b850c34
43 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010408889
44 https://doi.org/10.1007/0-387-21810-6_2
45 schema:sdDatePublished 2022-01-01T19:23
46 schema:sdLicense https://scigraph.springernature.com/explorer/license/
47 schema:sdPublisher N4135c794bffe4a029366a3cb8365bfa5
48 schema:url https://doi.org/10.1007/0-387-21810-6_2
49 sgo:license sg:explorer/license/
50 sgo:sdDataset chapters
51 rdf:type schema:Chapter
52 N24a6f453c32c42f3925f5b655b850c34 schema:name Springer Nature
53 rdf:type schema:Organisation
54 N4135c794bffe4a029366a3cb8365bfa5 schema:name Springer Nature - SN SciGraph project
55 rdf:type schema:Organization
56 N4aaff68909b44562b4be1e06fe7dd4b0 schema:name dimensions_id
57 schema:value pub.1010408889
58 rdf:type schema:PropertyValue
59 Na9331cf1639845299428d50dd547da47 schema:name doi
60 schema:value 10.1007/0-387-21810-6_2
61 rdf:type schema:PropertyValue
62 Nab8e6058b061445d938a6db6c47b62d8 schema:isbn 978-0-387-21810-6
63 978-0-387-95488-2
64 schema:name Geometric Level Set Methods in Imaging, Vision, and Graphics
65 rdf:type schema:Book
66 Nd336c6ebb39c46d2b10bedbaaa260a0c rdf:first sg:person.016347323445.35
67 rdf:rest rdf:nil
68 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
69 schema:name Information and Computing Sciences
70 rdf:type schema:DefinedTerm
71 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
72 schema:name Artificial Intelligence and Image Processing
73 rdf:type schema:DefinedTerm
74 sg:person.016347323445.35 schema:familyName Terzopoulos
75 schema:givenName Demetri
76 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
77 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...