Deformable Models: Classic, Topology-Adaptive and Generalized Formulations View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003-01-01

AUTHORS

Demetri Terzopoulos

ABSTRACT

“Deformable models” refers to a class of physics-based modeling methods with an extensive track record in computer vision, medical imaging, computer graphics, geometric design, and related areas. Unlike the Eulerian (fluid) formulations associated with level set methods, deformable models are characterized by Lagrangian (solid) formulations, three variants of which are reviewed herein. More... »

PAGES

21-40

Book

TITLE

Geometric Level Set Methods in Imaging, Vision, and Graphics

ISBN

978-0-387-95488-2
978-0-387-21810-6

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-387-21810-6_2

DOI

http://dx.doi.org/10.1007/0-387-21810-6_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1010408889


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Terzopoulos", 
        "givenName": "Demetri", 
        "id": "sg:person.016347323445.35", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2003-01-01", 
    "datePublishedReg": "2003-01-01", 
    "description": "Abstract\u201cDeformable models\u201d refers to a class of physics-based modeling methods with an extensive track record in computer vision, medical imaging, computer graphics, geometric design, and related areas. Unlike the Eulerian (fluid) formulations associated with level set methods, deformable models are characterized by Lagrangian (solid) formulations, three variants of which are reviewed herein.", 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-387-21810-6_2", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-95488-2", 
        "978-0-387-21810-6"
      ], 
      "name": "Geometric Level Set Methods in Imaging, Vision, and Graphics", 
      "type": "Book"
    }, 
    "keywords": [
      "computer vision", 
      "physics-based modeling method", 
      "computer graphics", 
      "generalized formulation", 
      "deformable model", 
      "Lagrangian formulation", 
      "medical imaging", 
      "Eulerian formulation", 
      "geometric design", 
      "modeling method", 
      "related areas", 
      "formulation", 
      "graphics", 
      "vision", 
      "model", 
      "class", 
      "method", 
      "design", 
      "track record", 
      "records", 
      "variants", 
      "area", 
      "imaging", 
      "levels", 
      "classic", 
      "extensive track record"
    ], 
    "name": "Deformable Models: Classic, Topology-Adaptive and Generalized Formulations", 
    "pagination": "21-40", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1010408889"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-387-21810-6_2"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-387-21810-6_2", 
      "https://app.dimensions.ai/details/publication/pub.1010408889"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-10T10:44", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220509/entities/gbq_results/chapter/chapter_253.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/0-387-21810-6_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-387-21810-6_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-387-21810-6_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-387-21810-6_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-387-21810-6_2'


 

This table displays all metadata directly associated to this object as RDF triples.

76 TRIPLES      22 PREDICATES      50 URIs      43 LITERALS      6 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-387-21810-6_2 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N8f31722ed7184fc6ad011d72d0fe3adf
4 schema:datePublished 2003-01-01
5 schema:datePublishedReg 2003-01-01
6 schema:description Abstract“Deformable models” refers to a class of physics-based modeling methods with an extensive track record in computer vision, medical imaging, computer graphics, geometric design, and related areas. Unlike the Eulerian (fluid) formulations associated with level set methods, deformable models are characterized by Lagrangian (solid) formulations, three variants of which are reviewed herein.
7 schema:genre chapter
8 schema:inLanguage en
9 schema:isAccessibleForFree false
10 schema:isPartOf N52e8088aa2b1477a895bb3bb0fc62985
11 schema:keywords Eulerian formulation
12 Lagrangian formulation
13 area
14 class
15 classic
16 computer graphics
17 computer vision
18 deformable model
19 design
20 extensive track record
21 formulation
22 generalized formulation
23 geometric design
24 graphics
25 imaging
26 levels
27 medical imaging
28 method
29 model
30 modeling method
31 physics-based modeling method
32 records
33 related areas
34 track record
35 variants
36 vision
37 schema:name Deformable Models: Classic, Topology-Adaptive and Generalized Formulations
38 schema:pagination 21-40
39 schema:productId N2937370608304e5b91e4f19fee070ea3
40 Ndfc87dab2f9f4aa4803c7b0be5caa48b
41 schema:publisher N9ee0bee5e80b48eb92ec21d853ca53c2
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010408889
43 https://doi.org/10.1007/0-387-21810-6_2
44 schema:sdDatePublished 2022-05-10T10:44
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N6d5dfb4d6e124e6f8579ceaebea27bb6
47 schema:url https://doi.org/10.1007/0-387-21810-6_2
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N2937370608304e5b91e4f19fee070ea3 schema:name dimensions_id
52 schema:value pub.1010408889
53 rdf:type schema:PropertyValue
54 N52e8088aa2b1477a895bb3bb0fc62985 schema:isbn 978-0-387-21810-6
55 978-0-387-95488-2
56 schema:name Geometric Level Set Methods in Imaging, Vision, and Graphics
57 rdf:type schema:Book
58 N6d5dfb4d6e124e6f8579ceaebea27bb6 schema:name Springer Nature - SN SciGraph project
59 rdf:type schema:Organization
60 N8f31722ed7184fc6ad011d72d0fe3adf rdf:first sg:person.016347323445.35
61 rdf:rest rdf:nil
62 N9ee0bee5e80b48eb92ec21d853ca53c2 schema:name Springer Nature
63 rdf:type schema:Organisation
64 Ndfc87dab2f9f4aa4803c7b0be5caa48b schema:name doi
65 schema:value 10.1007/0-387-21810-6_2
66 rdf:type schema:PropertyValue
67 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
68 schema:name Information and Computing Sciences
69 rdf:type schema:DefinedTerm
70 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
71 schema:name Artificial Intelligence and Image Processing
72 rdf:type schema:DefinedTerm
73 sg:person.016347323445.35 schema:familyName Terzopoulos
74 schema:givenName Demetri
75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016347323445.35
76 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...