The State of the Art in Fingerprint Classification View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004-01-01

AUTHORS

R. Cappelli , D. Maio

ABSTRACT

Fingerprint classification is an effective technique that allows the number of comparisons necessary to retrieve a fingerprint in a large database to be strongly reduced: In fact, if a reliable and accurate classification is performed, an unknown fingerprint needs to be compared only to the fingerprints belonging to the same class. Automatic fingerprint classification is a very difficult pattern recognition task, due to the small interclass variability, the large intraclass variability, and the presence of noise. This chapter surveys the main approaches presented in the literature and introduces a fingerprint classification method based on a multispace generalization of the Karhunen-Loève transform (MKL), which is particularly promising and achieves very good classification accuracy. Results on NIST DB4 and NIST DB14 are reported and compared with those published in the literature. More... »

PAGES

183-205

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-387-21685-5_9

DOI

http://dx.doi.org/10.1007/0-387-21685-5_9

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1044303676


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/08", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Information and Computing Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0801", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Artificial Intelligence and Image Processing", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Cappelli", 
        "givenName": "R.", 
        "id": "sg:person.011324641665.26", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324641665.26"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Maio", 
        "givenName": "D.", 
        "id": "sg:person.013075040365.65", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004-01-01", 
    "datePublishedReg": "2004-01-01", 
    "description": "Fingerprint classification is an effective technique that allows the number of comparisons necessary to retrieve a fingerprint in a large database to be strongly reduced: In fact, if a reliable and accurate classification is performed, an unknown fingerprint needs to be compared only to the fingerprints belonging to the same class. Automatic fingerprint classification is a very difficult pattern recognition task, due to the small interclass variability, the large intraclass variability, and the presence of noise. This chapter surveys the main approaches presented in the literature and introduces a fingerprint classification method based on a multispace generalization of the Karhunen-Lo\u00e8ve transform (MKL), which is particularly promising and achieves very good classification accuracy. Results on NIST DB4 and NIST DB14 are reported and compared with those published in the literature.", 
    "editor": [
      {
        "familyName": "Ratha", 
        "givenName": "Nalini", 
        "type": "Person"
      }, 
      {
        "familyName": "Bolle", 
        "givenName": "Ruud", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-387-21685-5_9", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-387-95593-3", 
        "978-0-387-21685-0"
      ], 
      "name": "Automatic Fingerprint Recognition Systems", 
      "type": "Book"
    }, 
    "keywords": [
      "fingerprint classification", 
      "Automatic fingerprint classification", 
      "large intraclass variability", 
      "fingerprint classification method", 
      "pattern recognition tasks", 
      "difficult pattern recognition tasks", 
      "better classification accuracy", 
      "Karhunen-Lo\u00e8ve transform", 
      "unknown fingerprint", 
      "NIST-DB14", 
      "intraclass variability", 
      "interclass variability", 
      "classification accuracy", 
      "classification method", 
      "number of comparisons", 
      "large database", 
      "recognition task", 
      "accurate classification", 
      "presence of noise", 
      "classification", 
      "same class", 
      "main approaches", 
      "fingerprints", 
      "effective technique", 
      "task", 
      "db4", 
      "accuracy", 
      "database", 
      "art", 
      "DB14", 
      "noise", 
      "transform", 
      "technique", 
      "generalization", 
      "method", 
      "class", 
      "number", 
      "literature", 
      "chapter", 
      "state", 
      "results", 
      "fact", 
      "comparison", 
      "variability", 
      "presence", 
      "approach"
    ], 
    "name": "The State of the Art in Fingerprint Classification", 
    "pagination": "183-205", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1044303676"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-387-21685-5_9"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-387-21685-5_9", 
      "https://app.dimensions.ai/details/publication/pub.1044303676"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:54", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_47.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/0-387-21685-5_9"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-387-21685-5_9'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-387-21685-5_9'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-387-21685-5_9'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-387-21685-5_9'


 

This table displays all metadata directly associated to this object as RDF triples.

112 TRIPLES      22 PREDICATES      69 URIs      62 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-387-21685-5_9 schema:about anzsrc-for:08
2 anzsrc-for:0801
3 schema:author N0dec3659f70d4c139dc6c995835ecca3
4 schema:datePublished 2004-01-01
5 schema:datePublishedReg 2004-01-01
6 schema:description Fingerprint classification is an effective technique that allows the number of comparisons necessary to retrieve a fingerprint in a large database to be strongly reduced: In fact, if a reliable and accurate classification is performed, an unknown fingerprint needs to be compared only to the fingerprints belonging to the same class. Automatic fingerprint classification is a very difficult pattern recognition task, due to the small interclass variability, the large intraclass variability, and the presence of noise. This chapter surveys the main approaches presented in the literature and introduces a fingerprint classification method based on a multispace generalization of the Karhunen-Loève transform (MKL), which is particularly promising and achieves very good classification accuracy. Results on NIST DB4 and NIST DB14 are reported and compared with those published in the literature.
7 schema:editor N63f8db3cd179400d891604f6f96c0a7c
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf N40319bdeff0f448685146b6fd46ca318
11 schema:keywords Automatic fingerprint classification
12 DB14
13 Karhunen-Loève transform
14 NIST-DB14
15 accuracy
16 accurate classification
17 approach
18 art
19 better classification accuracy
20 chapter
21 class
22 classification
23 classification accuracy
24 classification method
25 comparison
26 database
27 db4
28 difficult pattern recognition tasks
29 effective technique
30 fact
31 fingerprint classification
32 fingerprint classification method
33 fingerprints
34 generalization
35 interclass variability
36 intraclass variability
37 large database
38 large intraclass variability
39 literature
40 main approaches
41 method
42 noise
43 number
44 number of comparisons
45 pattern recognition tasks
46 presence
47 presence of noise
48 recognition task
49 results
50 same class
51 state
52 task
53 technique
54 transform
55 unknown fingerprint
56 variability
57 schema:name The State of the Art in Fingerprint Classification
58 schema:pagination 183-205
59 schema:productId N77693fd7a1b449e99d98b305e17a157b
60 N8fdc75c91b9c4db0952ae162254cf75a
61 schema:publisher Nfab9c37345744f9e991c44dfc35f8962
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044303676
63 https://doi.org/10.1007/0-387-21685-5_9
64 schema:sdDatePublished 2022-12-01T06:54
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N2c93d05c21344fa583c9c86308652f96
67 schema:url https://doi.org/10.1007/0-387-21685-5_9
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N0dec3659f70d4c139dc6c995835ecca3 rdf:first sg:person.011324641665.26
72 rdf:rest Nb42e8bb9dd5e45a7b9c40c37ecb3cf38
73 N2c93d05c21344fa583c9c86308652f96 schema:name Springer Nature - SN SciGraph project
74 rdf:type schema:Organization
75 N40319bdeff0f448685146b6fd46ca318 schema:isbn 978-0-387-21685-0
76 978-0-387-95593-3
77 schema:name Automatic Fingerprint Recognition Systems
78 rdf:type schema:Book
79 N63f8db3cd179400d891604f6f96c0a7c rdf:first Na9f8b7a07eee4e6d96d6d75ff91499c7
80 rdf:rest Nfd93d0ae7a174285bf00a85a1d98c5a3
81 N77693fd7a1b449e99d98b305e17a157b schema:name dimensions_id
82 schema:value pub.1044303676
83 rdf:type schema:PropertyValue
84 N8fdc75c91b9c4db0952ae162254cf75a schema:name doi
85 schema:value 10.1007/0-387-21685-5_9
86 rdf:type schema:PropertyValue
87 Na739650640c34fb5b58b7d532a43bb09 schema:familyName Bolle
88 schema:givenName Ruud
89 rdf:type schema:Person
90 Na9f8b7a07eee4e6d96d6d75ff91499c7 schema:familyName Ratha
91 schema:givenName Nalini
92 rdf:type schema:Person
93 Nb42e8bb9dd5e45a7b9c40c37ecb3cf38 rdf:first sg:person.013075040365.65
94 rdf:rest rdf:nil
95 Nfab9c37345744f9e991c44dfc35f8962 schema:name Springer Nature
96 rdf:type schema:Organisation
97 Nfd93d0ae7a174285bf00a85a1d98c5a3 rdf:first Na739650640c34fb5b58b7d532a43bb09
98 rdf:rest rdf:nil
99 anzsrc-for:08 schema:inDefinedTermSet anzsrc-for:
100 schema:name Information and Computing Sciences
101 rdf:type schema:DefinedTerm
102 anzsrc-for:0801 schema:inDefinedTermSet anzsrc-for:
103 schema:name Artificial Intelligence and Image Processing
104 rdf:type schema:DefinedTerm
105 sg:person.011324641665.26 schema:familyName Cappelli
106 schema:givenName R.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011324641665.26
108 rdf:type schema:Person
109 sg:person.013075040365.65 schema:familyName Maio
110 schema:givenName D.
111 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013075040365.65
112 rdf:type schema:Person
 




Preview window. Press ESC to close (or click here)


...