Design of Rocket-Powered Orbital Spacecraft View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2004-01-01

AUTHORS

A. Miele , S. Mancuso

ABSTRACT

In this paper, the feasibility of single-stage-suborbital (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft is investigated using optimal control theory. Ascent trajectories are optimized for different combinations of spacecraft structural factor and engine specific impulse, the optimization criterion being the maximum payload weight. Normalized payload weights are computed and used to assess feasibility.The results show that SSSO feasibility does not necessarily imply SSTO feasibility: while SSSO feasibility is guaranteed for all the parameter combinations considered, SSTO feasibility is guaranteed for only certain parameter combinations, which might be beyond the present state of the art. On the other hand, not only TSTO feasibility is guaranteed for all the parameter combinations considered, but a TSTO spacecraft is considerably superior to a SSTO spacecraft in terms of payload weight.Three areas of potential improvements are discussed: (i) use of lighter materials (lower structural factor) has a significant effect on payload weight and feasibility; (ii) use of engines with higher ratio of thrust to propellant weight flow (higher specific impulse) has also a significant effect on payload weight and feasibility; (iii) on the other hand, aerodynamic improvements via drag reduction have a relatively minor effect on payload weight and feasibility.In light of (i) to (iii), with reference to the specific impulse/structural factor domain, nearly-universal zero-payload lines can be constructed separating the feasibility region (positive payload) from the unfeasibility region (negative payload). The zeropayload lines are of considerable help to the designer in assessing the feasibility of a given spacecraft. More... »

PAGES

1-30

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-306-48637-7_1

DOI

http://dx.doi.org/10.1007/0-306-48637-7_1

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1001374800


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Aerospace Sciences, and Mathematical Sciences, Aero-Astronautics Group, Rice University, 77005-1892, Houston, Texas, USA", 
          "id": "http://www.grid.ac/institutes/grid.21940.3e", 
          "name": [
            "Aerospace Sciences, and Mathematical Sciences, Aero-Astronautics Group, Rice University, 77005-1892, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Miele", 
        "givenName": "A.", 
        "id": "sg:person.015552732657.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "European Space Technology and Research Center, 2201, AZ, Nordwijk, Netherlands", 
          "id": "http://www.grid.ac/institutes/None", 
          "name": [
            "European Space Technology and Research Center, 2201, AZ, Nordwijk, Netherlands"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mancuso", 
        "givenName": "S.", 
        "id": "sg:person.015632250607.79", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015632250607.79"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2004-01-01", 
    "datePublishedReg": "2004-01-01", 
    "description": "In this paper, the feasibility of single-stage-suborbital (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft is investigated using optimal control theory. Ascent trajectories are optimized for different combinations of spacecraft structural factor and engine specific impulse, the optimization criterion being the maximum payload weight. Normalized payload weights are computed and used to assess feasibility.The results show that SSSO feasibility does not necessarily imply SSTO feasibility: while SSSO feasibility is guaranteed for all the parameter combinations considered, SSTO feasibility is guaranteed for only certain parameter combinations, which might be beyond the present state of the art. On the other hand, not only TSTO feasibility is guaranteed for all the parameter combinations considered, but a TSTO spacecraft is considerably superior to a SSTO spacecraft in terms of payload weight.Three areas of potential improvements are discussed: (i) use of lighter materials (lower structural factor) has a significant effect on payload weight and feasibility; (ii) use of engines with higher ratio of thrust to propellant weight flow (higher specific impulse) has also a significant effect on payload weight and feasibility; (iii) on the other hand, aerodynamic improvements via drag reduction have a relatively minor effect on payload weight and feasibility.In light of (i) to (iii), with reference to the specific impulse/structural factor domain, nearly-universal zero-payload lines can be constructed separating the feasibility region (positive payload) from the unfeasibility region (negative payload). The zeropayload lines are of considerable help to the designer in assessing the feasibility of a given spacecraft.", 
    "editor": [
      {
        "familyName": "Miele", 
        "givenName": "Angelo", 
        "type": "Person"
      }, 
      {
        "familyName": "Frediani", 
        "givenName": "Aldo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-306-48637-7_1", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-306-48463-6", 
        "978-0-306-48637-1"
      ], 
      "name": "Advanced Design Problems in Aerospace Engineering", 
      "type": "Book"
    }, 
    "keywords": [
      "payload weight", 
      "optimal control theory", 
      "parameter combinations", 
      "maximum payload weight", 
      "engine specific impulse", 
      "use of engines", 
      "certain parameter combinations", 
      "control theory", 
      "weight flow", 
      "drag reduction", 
      "spacecraft structural factor", 
      "optimization criteria", 
      "feasibility region", 
      "aerodynamic improvement", 
      "specific impulse", 
      "ascent trajectory", 
      "light materials", 
      "orbital spacecraft", 
      "spacecraft", 
      "two-stage", 
      "feasibility", 
      "potential improvements", 
      "different combinations", 
      "engine", 
      "orbit", 
      "theory", 
      "significant effect", 
      "rocket", 
      "flow", 
      "trajectories", 
      "materials", 
      "minor effect", 
      "present state", 
      "thrust", 
      "design", 
      "high ratio", 
      "combination", 
      "designers", 
      "improvement", 
      "effect", 
      "terms", 
      "considerable help", 
      "ratio", 
      "use", 
      "reduction", 
      "impulses", 
      "lines", 
      "help", 
      "state", 
      "region", 
      "results", 
      "domain", 
      "hand", 
      "reference", 
      "criteria", 
      "weight", 
      "area", 
      "suborbitals", 
      "light", 
      "structural factors", 
      "art", 
      "factors", 
      "factor domain", 
      "paper"
    ], 
    "name": "Design of Rocket-Powered Orbital Spacecraft", 
    "pagination": "1-30", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1001374800"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-306-48637-7_1"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-306-48637-7_1", 
      "https://app.dimensions.ai/details/publication/pub.1001374800"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-12-01T06:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221201/entities/gbq_results/chapter/chapter_156.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/0-306-48637-7_1"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-306-48637-7_1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-306-48637-7_1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-306-48637-7_1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-306-48637-7_1'


 

This table displays all metadata directly associated to this object as RDF triples.

138 TRIPLES      22 PREDICATES      88 URIs      81 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-306-48637-7_1 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nba566de4e42f446c928b2bf529685cbd
4 schema:datePublished 2004-01-01
5 schema:datePublishedReg 2004-01-01
6 schema:description In this paper, the feasibility of single-stage-suborbital (SSSO), single-stage-to-orbit (SSTO), and two-stage-to-orbit (TSTO) rocket-powered spacecraft is investigated using optimal control theory. Ascent trajectories are optimized for different combinations of spacecraft structural factor and engine specific impulse, the optimization criterion being the maximum payload weight. Normalized payload weights are computed and used to assess feasibility.The results show that SSSO feasibility does not necessarily imply SSTO feasibility: while SSSO feasibility is guaranteed for all the parameter combinations considered, SSTO feasibility is guaranteed for only certain parameter combinations, which might be beyond the present state of the art. On the other hand, not only TSTO feasibility is guaranteed for all the parameter combinations considered, but a TSTO spacecraft is considerably superior to a SSTO spacecraft in terms of payload weight.Three areas of potential improvements are discussed: (i) use of lighter materials (lower structural factor) has a significant effect on payload weight and feasibility; (ii) use of engines with higher ratio of thrust to propellant weight flow (higher specific impulse) has also a significant effect on payload weight and feasibility; (iii) on the other hand, aerodynamic improvements via drag reduction have a relatively minor effect on payload weight and feasibility.In light of (i) to (iii), with reference to the specific impulse/structural factor domain, nearly-universal zero-payload lines can be constructed separating the feasibility region (positive payload) from the unfeasibility region (negative payload). The zeropayload lines are of considerable help to the designer in assessing the feasibility of a given spacecraft.
7 schema:editor N03ccf711e3ff4e6986228619e7a6e6af
8 schema:genre chapter
9 schema:isAccessibleForFree false
10 schema:isPartOf Ndb9c85b7537b4238a3b31f60d95be36d
11 schema:keywords aerodynamic improvement
12 area
13 art
14 ascent trajectory
15 certain parameter combinations
16 combination
17 considerable help
18 control theory
19 criteria
20 design
21 designers
22 different combinations
23 domain
24 drag reduction
25 effect
26 engine
27 engine specific impulse
28 factor domain
29 factors
30 feasibility
31 feasibility region
32 flow
33 hand
34 help
35 high ratio
36 improvement
37 impulses
38 light
39 light materials
40 lines
41 materials
42 maximum payload weight
43 minor effect
44 optimal control theory
45 optimization criteria
46 orbit
47 orbital spacecraft
48 paper
49 parameter combinations
50 payload weight
51 potential improvements
52 present state
53 ratio
54 reduction
55 reference
56 region
57 results
58 rocket
59 significant effect
60 spacecraft
61 spacecraft structural factor
62 specific impulse
63 state
64 structural factors
65 suborbitals
66 terms
67 theory
68 thrust
69 trajectories
70 two-stage
71 use
72 use of engines
73 weight
74 weight flow
75 schema:name Design of Rocket-Powered Orbital Spacecraft
76 schema:pagination 1-30
77 schema:productId Nb2e99ae5ee37413f808c2c6cff502d20
78 Nb60ca2786cc54a1d8ebd295e69cf1cd0
79 schema:publisher Ncdbdc56fa82f4241a69d3ce090c2f27c
80 schema:sameAs https://app.dimensions.ai/details/publication/pub.1001374800
81 https://doi.org/10.1007/0-306-48637-7_1
82 schema:sdDatePublished 2022-12-01T06:47
83 schema:sdLicense https://scigraph.springernature.com/explorer/license/
84 schema:sdPublisher N81b1a0a43136499da39772b9447f79be
85 schema:url https://doi.org/10.1007/0-306-48637-7_1
86 sgo:license sg:explorer/license/
87 sgo:sdDataset chapters
88 rdf:type schema:Chapter
89 N03ccf711e3ff4e6986228619e7a6e6af rdf:first N118ea21c0d8f42f3849057426a915808
90 rdf:rest N852d9ffe900740a2b9c0cdbf7d3a10f2
91 N118ea21c0d8f42f3849057426a915808 schema:familyName Miele
92 schema:givenName Angelo
93 rdf:type schema:Person
94 N81b1a0a43136499da39772b9447f79be schema:name Springer Nature - SN SciGraph project
95 rdf:type schema:Organization
96 N852d9ffe900740a2b9c0cdbf7d3a10f2 rdf:first Ne622ecb49d1947d6aeb15b3679efc89e
97 rdf:rest rdf:nil
98 Nb2e99ae5ee37413f808c2c6cff502d20 schema:name doi
99 schema:value 10.1007/0-306-48637-7_1
100 rdf:type schema:PropertyValue
101 Nb2fa679d1c1f4b8f9a94f2c307959aa5 rdf:first sg:person.015632250607.79
102 rdf:rest rdf:nil
103 Nb60ca2786cc54a1d8ebd295e69cf1cd0 schema:name dimensions_id
104 schema:value pub.1001374800
105 rdf:type schema:PropertyValue
106 Nba566de4e42f446c928b2bf529685cbd rdf:first sg:person.015552732657.49
107 rdf:rest Nb2fa679d1c1f4b8f9a94f2c307959aa5
108 Ncdbdc56fa82f4241a69d3ce090c2f27c schema:name Springer Nature
109 rdf:type schema:Organisation
110 Ndb9c85b7537b4238a3b31f60d95be36d schema:isbn 978-0-306-48463-6
111 978-0-306-48637-1
112 schema:name Advanced Design Problems in Aerospace Engineering
113 rdf:type schema:Book
114 Ne622ecb49d1947d6aeb15b3679efc89e schema:familyName Frediani
115 schema:givenName Aldo
116 rdf:type schema:Person
117 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
118 schema:name Chemical Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
121 schema:name Physical Chemistry (incl. Structural)
122 rdf:type schema:DefinedTerm
123 sg:person.015552732657.49 schema:affiliation grid-institutes:grid.21940.3e
124 schema:familyName Miele
125 schema:givenName A.
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015552732657.49
127 rdf:type schema:Person
128 sg:person.015632250607.79 schema:affiliation grid-institutes:None
129 schema:familyName Mancuso
130 schema:givenName S.
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015632250607.79
132 rdf:type schema:Person
133 grid-institutes:None schema:alternateName European Space Technology and Research Center, 2201, AZ, Nordwijk, Netherlands
134 schema:name European Space Technology and Research Center, 2201, AZ, Nordwijk, Netherlands
135 rdf:type schema:Organization
136 grid-institutes:grid.21940.3e schema:alternateName Aerospace Sciences, and Mathematical Sciences, Aero-Astronautics Group, Rice University, 77005-1892, Houston, Texas, USA
137 schema:name Aerospace Sciences, and Mathematical Sciences, Aero-Astronautics Group, Rice University, 77005-1892, Houston, Texas, USA
138 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...