Precipitation Modeling for Inversion Purposes View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

P. Bauer

ABSTRACT

Precipitation retrieval from space which makes use of physical forward radiative transfer modeling requires the proper treatment of all sources of radiation scattering and emission in atmosphere, clouds, and interaction with surfaces. This involves the evaluation of the significance of individual effects with respect to the observed signals. In case of microwave radiation, these effects are the three-dimensional distribution of temperature, humidity, and hydrometeor concentrations, particle size distributions, and particle composition and shape. On the technical side of the problem, the accuracy of the radiative transfer model and the simulation of the radiometer’s imaging specifications are important. Most of the above effects have been described in the past thus a certain background for the generation of retrieval databases from radiative transfer simulations is available. However, there are major drawbacks at the current state of precipitation retrieval: (1) even though individual radiation processes are well described, no synthesis is available combining the best available models; (2) the errors of radiative transfer in realistic clouds are unknown thus limit its use in numerical prediction models together with satellite data; (3) the input to the radiative transfer models, i.e., cloud and precipitation models seem insufficient for the application of retrievals beyond regional studies. More... »

PAGES

19-34

Book

TITLE

Remote Sensing of Atmosphere and Ocean from Space: Models, Instruments and Techniques

ISBN

1-4020-0943-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-306-48150-2_2

DOI

http://dx.doi.org/10.1007/0-306-48150-2_2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1038379629


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0299", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Other Physical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "European Centre for Medium-Range Weather Forecasts", 
          "id": "https://www.grid.ac/institutes/grid.42781.38", 
          "name": [
            "Research Department, European Centre for Medium-Range Weather Forecasts, UK"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bauer", 
        "givenName": "P.", 
        "id": "sg:person.01366262703.17", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366262703.17"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1175/1520-0493(1999)127<1458:vaosit>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002376058"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-4073(92)90127-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004358179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-4073(92)90127-p", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004358179"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1998)037<1619:cotdef>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008362507"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1998)037<0155:aoteod>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009174809"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(1998)015<0809:ttrmmt>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009649361"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/92jd00289", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010401197"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1998)037<0184:mosprs>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013041008"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1999)038<0029:mpofpa>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017778991"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1998)055<1644:uocmmf>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020383990"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0426(1996)013<0832:pbsrop>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023668294"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1990)047<0584:awtats>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024056222"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(2001)040<1145:amlmfp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1029777031"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0022-4073(98)00012-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032488955"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1998)055<1483:rowpp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039296048"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1988)027<1055:rttsta>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040371692"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0450(1999)038<1195:socasp>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040983727"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(1976)033<2452:tdeafr>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046870477"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1029/94jd01150", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050590213"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/36.536538", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061161498"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1175/1520-0469(2000)057<1082:ccmrtm>2.0.co;2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1063422104"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2151/jmsj1965.75.4_799", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1084930041"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "Precipitation retrieval from space which makes use of physical forward radiative transfer modeling requires the proper treatment of all sources of radiation scattering and emission in atmosphere, clouds, and interaction with surfaces. This involves the evaluation of the significance of individual effects with respect to the observed signals. In case of microwave radiation, these effects are the three-dimensional distribution of temperature, humidity, and hydrometeor concentrations, particle size distributions, and particle composition and shape. On the technical side of the problem, the accuracy of the radiative transfer model and the simulation of the radiometer\u2019s imaging specifications are important. Most of the above effects have been described in the past thus a certain background for the generation of retrieval databases from radiative transfer simulations is available. However, there are major drawbacks at the current state of precipitation retrieval: (1) even though individual radiation processes are well described, no synthesis is available combining the best available models; (2) the errors of radiative transfer in realistic clouds are unknown thus limit its use in numerical prediction models together with satellite data; (3) the input to the radiative transfer models, i.e., cloud and precipitation models seem insufficient for the application of retrievals beyond regional studies.", 
    "editor": [
      {
        "familyName": "Marzano", 
        "givenName": "Frank S.", 
        "type": "Person"
      }, 
      {
        "familyName": "Visconti", 
        "givenName": "Guido", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-306-48150-2_2", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "1-4020-0943-7"
      ], 
      "name": "Remote Sensing of Atmosphere and Ocean from Space: Models, Instruments and Techniques", 
      "type": "Book"
    }, 
    "name": "Precipitation Modeling for Inversion Purposes", 
    "pagination": "19-34", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-306-48150-2_2"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "b6d33894d524a291eaa6f1c623f4e5b92bf3fa54bdeb261442a1c47c422648c3"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1038379629"
        ]
      }
    ], 
    "publisher": {
      "location": "Dordrecht", 
      "name": "Kluwer Academic Publishers", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-306-48150-2_2", 
      "https://app.dimensions.ai/details/publication/pub.1038379629"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T11:36", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8660_00000267.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/0-306-48150-2_2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-306-48150-2_2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-306-48150-2_2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-306-48150-2_2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-306-48150-2_2'


 

This table displays all metadata directly associated to this object as RDF triples.

132 TRIPLES      23 PREDICATES      48 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-306-48150-2_2 schema:about anzsrc-for:02
2 anzsrc-for:0299
3 schema:author Nb117991517ff46289f88a288ba386673
4 schema:citation https://doi.org/10.1016/0022-4073(92)90127-p
5 https://doi.org/10.1016/s0022-4073(98)00012-0
6 https://doi.org/10.1029/92jd00289
7 https://doi.org/10.1029/94jd01150
8 https://doi.org/10.1109/36.536538
9 https://doi.org/10.1175/1520-0426(1996)013<0832:pbsrop>2.0.co;2
10 https://doi.org/10.1175/1520-0426(1998)015<0809:ttrmmt>2.0.co;2
11 https://doi.org/10.1175/1520-0450(1988)027<1055:rttsta>2.0.co;2
12 https://doi.org/10.1175/1520-0450(1998)037<0155:aoteod>2.0.co;2
13 https://doi.org/10.1175/1520-0450(1998)037<0184:mosprs>2.0.co;2
14 https://doi.org/10.1175/1520-0450(1998)037<1619:cotdef>2.0.co;2
15 https://doi.org/10.1175/1520-0450(1999)038<0029:mpofpa>2.0.co;2
16 https://doi.org/10.1175/1520-0450(1999)038<1195:socasp>2.0.co;2
17 https://doi.org/10.1175/1520-0450(2001)040<1145:amlmfp>2.0.co;2
18 https://doi.org/10.1175/1520-0469(1976)033<2452:tdeafr>2.0.co;2
19 https://doi.org/10.1175/1520-0469(1990)047<0584:awtats>2.0.co;2
20 https://doi.org/10.1175/1520-0469(1998)055<1483:rowpp>2.0.co;2
21 https://doi.org/10.1175/1520-0469(1998)055<1644:uocmmf>2.0.co;2
22 https://doi.org/10.1175/1520-0469(2000)057<1082:ccmrtm>2.0.co;2
23 https://doi.org/10.1175/1520-0493(1999)127<1458:vaosit>2.0.co;2
24 https://doi.org/10.2151/jmsj1965.75.4_799
25 schema:datePublished 2003
26 schema:datePublishedReg 2003-01-01
27 schema:description Precipitation retrieval from space which makes use of physical forward radiative transfer modeling requires the proper treatment of all sources of radiation scattering and emission in atmosphere, clouds, and interaction with surfaces. This involves the evaluation of the significance of individual effects with respect to the observed signals. In case of microwave radiation, these effects are the three-dimensional distribution of temperature, humidity, and hydrometeor concentrations, particle size distributions, and particle composition and shape. On the technical side of the problem, the accuracy of the radiative transfer model and the simulation of the radiometer’s imaging specifications are important. Most of the above effects have been described in the past thus a certain background for the generation of retrieval databases from radiative transfer simulations is available. However, there are major drawbacks at the current state of precipitation retrieval: (1) even though individual radiation processes are well described, no synthesis is available combining the best available models; (2) the errors of radiative transfer in realistic clouds are unknown thus limit its use in numerical prediction models together with satellite data; (3) the input to the radiative transfer models, i.e., cloud and precipitation models seem insufficient for the application of retrievals beyond regional studies.
28 schema:editor N1b8a87e1071740f18bd91db5c7d70528
29 schema:genre chapter
30 schema:inLanguage en
31 schema:isAccessibleForFree false
32 schema:isPartOf N5ac1c45558834e6fa845084a99f8bfaa
33 schema:name Precipitation Modeling for Inversion Purposes
34 schema:pagination 19-34
35 schema:productId N1f85aea150074fddb0b6c5f337fe4097
36 Nc4ac01776bd64a33a0b9b0475bcf20aa
37 Nd7f1b7038450456da7f12803e6f012bd
38 schema:publisher Ne10bb88c41bb44c1a6bce16c4eb869d1
39 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038379629
40 https://doi.org/10.1007/0-306-48150-2_2
41 schema:sdDatePublished 2019-04-15T11:36
42 schema:sdLicense https://scigraph.springernature.com/explorer/license/
43 schema:sdPublisher N5406576092da4b3bb3d8f1d7329b9320
44 schema:url http://link.springer.com/10.1007/0-306-48150-2_2
45 sgo:license sg:explorer/license/
46 sgo:sdDataset chapters
47 rdf:type schema:Chapter
48 N1b8a87e1071740f18bd91db5c7d70528 rdf:first N7e57090e49454aa786b173dfe0686f7a
49 rdf:rest Nec0c1072d644417ea65e0256b2e1bf6d
50 N1f85aea150074fddb0b6c5f337fe4097 schema:name readcube_id
51 schema:value b6d33894d524a291eaa6f1c623f4e5b92bf3fa54bdeb261442a1c47c422648c3
52 rdf:type schema:PropertyValue
53 N5406576092da4b3bb3d8f1d7329b9320 schema:name Springer Nature - SN SciGraph project
54 rdf:type schema:Organization
55 N5ac1c45558834e6fa845084a99f8bfaa schema:isbn 1-4020-0943-7
56 schema:name Remote Sensing of Atmosphere and Ocean from Space: Models, Instruments and Techniques
57 rdf:type schema:Book
58 N709853a00b70436e8339f77100177721 schema:familyName Visconti
59 schema:givenName Guido
60 rdf:type schema:Person
61 N7e57090e49454aa786b173dfe0686f7a schema:familyName Marzano
62 schema:givenName Frank S.
63 rdf:type schema:Person
64 Nb117991517ff46289f88a288ba386673 rdf:first sg:person.01366262703.17
65 rdf:rest rdf:nil
66 Nc4ac01776bd64a33a0b9b0475bcf20aa schema:name dimensions_id
67 schema:value pub.1038379629
68 rdf:type schema:PropertyValue
69 Nd7f1b7038450456da7f12803e6f012bd schema:name doi
70 schema:value 10.1007/0-306-48150-2_2
71 rdf:type schema:PropertyValue
72 Ne10bb88c41bb44c1a6bce16c4eb869d1 schema:location Dordrecht
73 schema:name Kluwer Academic Publishers
74 rdf:type schema:Organisation
75 Nec0c1072d644417ea65e0256b2e1bf6d rdf:first N709853a00b70436e8339f77100177721
76 rdf:rest rdf:nil
77 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
78 schema:name Physical Sciences
79 rdf:type schema:DefinedTerm
80 anzsrc-for:0299 schema:inDefinedTermSet anzsrc-for:
81 schema:name Other Physical Sciences
82 rdf:type schema:DefinedTerm
83 sg:person.01366262703.17 schema:affiliation https://www.grid.ac/institutes/grid.42781.38
84 schema:familyName Bauer
85 schema:givenName P.
86 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01366262703.17
87 rdf:type schema:Person
88 https://doi.org/10.1016/0022-4073(92)90127-p schema:sameAs https://app.dimensions.ai/details/publication/pub.1004358179
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/s0022-4073(98)00012-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032488955
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1029/92jd00289 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010401197
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1029/94jd01150 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050590213
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1109/36.536538 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061161498
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1175/1520-0426(1996)013<0832:pbsrop>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023668294
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1175/1520-0426(1998)015<0809:ttrmmt>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009649361
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1175/1520-0450(1988)027<1055:rttsta>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040371692
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1175/1520-0450(1998)037<0155:aoteod>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009174809
105 rdf:type schema:CreativeWork
106 https://doi.org/10.1175/1520-0450(1998)037<0184:mosprs>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013041008
107 rdf:type schema:CreativeWork
108 https://doi.org/10.1175/1520-0450(1998)037<1619:cotdef>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008362507
109 rdf:type schema:CreativeWork
110 https://doi.org/10.1175/1520-0450(1999)038<0029:mpofpa>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017778991
111 rdf:type schema:CreativeWork
112 https://doi.org/10.1175/1520-0450(1999)038<1195:socasp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040983727
113 rdf:type schema:CreativeWork
114 https://doi.org/10.1175/1520-0450(2001)040<1145:amlmfp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029777031
115 rdf:type schema:CreativeWork
116 https://doi.org/10.1175/1520-0469(1976)033<2452:tdeafr>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046870477
117 rdf:type schema:CreativeWork
118 https://doi.org/10.1175/1520-0469(1990)047<0584:awtats>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024056222
119 rdf:type schema:CreativeWork
120 https://doi.org/10.1175/1520-0469(1998)055<1483:rowpp>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039296048
121 rdf:type schema:CreativeWork
122 https://doi.org/10.1175/1520-0469(1998)055<1644:uocmmf>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020383990
123 rdf:type schema:CreativeWork
124 https://doi.org/10.1175/1520-0469(2000)057<1082:ccmrtm>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1063422104
125 rdf:type schema:CreativeWork
126 https://doi.org/10.1175/1520-0493(1999)127<1458:vaosit>2.0.co;2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002376058
127 rdf:type schema:CreativeWork
128 https://doi.org/10.2151/jmsj1965.75.4_799 schema:sameAs https://app.dimensions.ai/details/publication/pub.1084930041
129 rdf:type schema:CreativeWork
130 https://www.grid.ac/institutes/grid.42781.38 schema:alternateName European Centre for Medium-Range Weather Forecasts
131 schema:name Research Department, European Centre for Medium-Range Weather Forecasts, UK
132 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...