Human Glioma Diagnosis from Gene Expression Data View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2003

AUTHORS

Gregory N. Fuller , Kenneth R. Hess , Cristian Mircean , Ioan Tabus , Ilya Shmulevich , Chang Hun Rhee , Kenneth D. Aldape , Janet M. Bruner , Raymond A. Sawaya , Wei Zhang

ABSTRACT

The practice of clinical genomics has patient care applications as the ultimate goal. Geneexpression profiling studies have clearly demonstrated the utility of genomics in the areas of molecular classification, identification of novel subgroups(so-called “diseases within disease”), identification of new markers for diagnosis, and identification of novel targets for therapeutic intervention. Genomics data analyses have further demonstrated that an approach based on single gene analysis is not sufficiently robust for diagnostic applications, especially when multiple subtypes of diseases are involved. In contrast, combinations of genes provide much more useful information. Although gene expression profiling projects normally include the analysis of hundreds or thousands of genes in a single experiment, many of the genes thusanalyzed have very little or no disease classification potential. Such genes should be excluded from diagnosis chips, which optimally will contain only a small subset of genes. Focused chips of this type are also more amenable to the strict quality controls and conditioning that are required for clinical applications. If the analysis is extended to the protein level via immunohistochemistry, the number of genes to be tested should similarly not be too large if practical clinical utility is sought. In this paper, we have described a methodology for selecting a subset of genes that in combination have the greatest discriminating power for the four major subtypes of human gliomas. The 40 genes thus identified may potentially constitute a clinically useful diagnostic chip. More... »

PAGES

241-256

References to SciGraph publications

Book

TITLE

Computational and Statistical Approaches to Genomics

ISBN

1-4020-7023-3

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-306-47825-0_14

DOI

http://dx.doi.org/10.1007/0-306-47825-0_14

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1013995771


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Genetics", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fuller", 
        "givenName": "Gregory N.", 
        "id": "sg:person.013732343337.08", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013732343337.08"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hess", 
        "givenName": "Kenneth R.", 
        "id": "sg:person.010260560177.95", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010260560177.95"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tampere University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6986.1", 
          "name": [
            "Institute of Signal Processing, Tampere University of Technology, Tampere, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Mircean", 
        "givenName": "Cristian", 
        "id": "sg:person.01243262074.71", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243262074.71"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Tampere University of Technology", 
          "id": "https://www.grid.ac/institutes/grid.6986.1", 
          "name": [
            "Institute of Signal Processing, Tampere University of Technology, Tampere, Finland"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Tabus", 
        "givenName": "Ioan", 
        "id": "sg:person.01043314761.51", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043314761.51"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shmulevich", 
        "givenName": "Ilya", 
        "id": "sg:person.01354314446.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354314446.15"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Korea Institute of Radiological and Medical Sciences", 
          "id": "https://www.grid.ac/institutes/grid.415464.6", 
          "name": [
            "Department of Neurosurgery, Korea Cancer Center Hospital, Seoul, Korea"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Rhee", 
        "givenName": "Chang Hun", 
        "id": "sg:person.0735450761.67", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735450761.67"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Aldape", 
        "givenName": "Kenneth D.", 
        "id": "sg:person.012676151677.19", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012676151677.19"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Bruner", 
        "givenName": "Janet M.", 
        "id": "sg:person.013375073077.30", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013375073077.30"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Sawaya", 
        "givenName": "Raymond A.", 
        "id": "sg:person.016111575304.39", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016111575304.39"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The University of Texas MD Anderson Cancer Center", 
          "id": "https://www.grid.ac/institutes/grid.240145.6", 
          "name": [
            "Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Zhang", 
        "givenName": "Wei", 
        "id": "sg:person.012724545020.23", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724545020.23"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1093/jnen/61.1.58", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003356836"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1004943787", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-3626-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004943787", 
          "https://doi.org/10.1007/978-1-4615-3626-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4615-3626-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004943787", 
          "https://doi.org/10.1007/978-1-4615-3626-0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1750-3639.2002.tb00423.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005225494"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1750-3639.2002.tb00426.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006415372"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/18.4.555", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008562089"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1750-3639.2002.tb00425.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008867928"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0002-9440(10)64076-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018695866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/jnci/90.19.1473", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020269354"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1117/12.469436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021561132"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0004-3702(97)00043-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031014012"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1750-3639.2002.tb00424.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034200843"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1750-3639.2002.tb00427.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037188811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.286.5439.531", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042995627"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1745-3984.2003.tb01108.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1052250038"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1089/10665270252833226", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1059204920"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1198/016214502753479248", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064197973"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1214/aos/1176343886", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064407310"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2307/1403797", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069474052"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074521003", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1200/jco.2000.18.3.636", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074583468"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.14670/hh-15.971", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1074691415"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1074739236", 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/0471200611", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1098661155"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2003", 
    "datePublishedReg": "2003-01-01", 
    "description": "The practice of clinical genomics has patient care applications as the ultimate goal. Geneexpression profiling studies have clearly demonstrated the utility of genomics in the areas of molecular classification, identification of novel subgroups(so-called \u201cdiseases within disease\u201d), identification of new markers for diagnosis, and identification of novel targets for therapeutic intervention. Genomics data analyses have further demonstrated that an approach based on single gene analysis is not sufficiently robust for diagnostic applications, especially when multiple subtypes of diseases are involved. In contrast, combinations of genes provide much more useful information. Although gene expression profiling projects normally include the analysis of hundreds or thousands of genes in a single experiment, many of the genes thusanalyzed have very little or no disease classification potential. Such genes should be excluded from diagnosis chips, which optimally will contain only a small subset of genes. Focused chips of this type are also more amenable to the strict quality controls and conditioning that are required for clinical applications. If the analysis is extended to the protein level via immunohistochemistry, the number of genes to be tested should similarly not be too large if practical clinical utility is sought. In this paper, we have described a methodology for selecting a subset of genes that in combination have the greatest discriminating power for the four major subtypes of human gliomas. The 40 genes thus identified may potentially constitute a clinically useful diagnostic chip.", 
    "editor": [
      {
        "familyName": "Zhang", 
        "givenName": "Wei", 
        "type": "Person"
      }, 
      {
        "familyName": "Shmulevich", 
        "givenName": "Ilya", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-306-47825-0_14", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "1-4020-7023-3"
      ], 
      "name": "Computational and Statistical Approaches to Genomics", 
      "type": "Book"
    }, 
    "name": "Human Glioma Diagnosis from Gene Expression Data", 
    "pagination": "241-256", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-306-47825-0_14"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "42ac29d7fba1bf842181e8331cb99b985a8a49dddc7eb87d87e752eaa8b2bc2a"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1013995771"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston", 
      "name": "Kluwer Academic Publishers", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-306-47825-0_14", 
      "https://app.dimensions.ai/details/publication/pub.1013995771"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T16:15", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8675_00000251.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/0-306-47825-0_14"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-306-47825-0_14'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-306-47825-0_14'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-306-47825-0_14'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-306-47825-0_14'


 

This table displays all metadata directly associated to this object as RDF triples.

210 TRIPLES      23 PREDICATES      51 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-306-47825-0_14 schema:about anzsrc-for:06
2 anzsrc-for:0604
3 schema:author N61a3adeb7ca4441ba528bf6f0fab82c5
4 schema:citation sg:pub.10.1007/978-1-4615-3626-0
5 https://app.dimensions.ai/details/publication/pub.1004943787
6 https://app.dimensions.ai/details/publication/pub.1074521003
7 https://app.dimensions.ai/details/publication/pub.1074739236
8 https://doi.org/10.1002/0471200611
9 https://doi.org/10.1016/s0002-9440(10)64076-x
10 https://doi.org/10.1016/s0004-3702(97)00043-x
11 https://doi.org/10.1089/10665270252833226
12 https://doi.org/10.1093/bioinformatics/18.4.555
13 https://doi.org/10.1093/jnci/90.19.1473
14 https://doi.org/10.1093/jnen/61.1.58
15 https://doi.org/10.1111/j.1745-3984.2003.tb01108.x
16 https://doi.org/10.1111/j.1750-3639.2002.tb00423.x
17 https://doi.org/10.1111/j.1750-3639.2002.tb00424.x
18 https://doi.org/10.1111/j.1750-3639.2002.tb00425.x
19 https://doi.org/10.1111/j.1750-3639.2002.tb00426.x
20 https://doi.org/10.1111/j.1750-3639.2002.tb00427.x
21 https://doi.org/10.1117/12.469436
22 https://doi.org/10.1126/science.286.5439.531
23 https://doi.org/10.1198/016214502753479248
24 https://doi.org/10.1200/jco.2000.18.3.636
25 https://doi.org/10.1214/aos/1176343886
26 https://doi.org/10.14670/hh-15.971
27 https://doi.org/10.2307/1403797
28 schema:datePublished 2003
29 schema:datePublishedReg 2003-01-01
30 schema:description The practice of clinical genomics has patient care applications as the ultimate goal. Geneexpression profiling studies have clearly demonstrated the utility of genomics in the areas of molecular classification, identification of novel subgroups(so-called “diseases within disease”), identification of new markers for diagnosis, and identification of novel targets for therapeutic intervention. Genomics data analyses have further demonstrated that an approach based on single gene analysis is not sufficiently robust for diagnostic applications, especially when multiple subtypes of diseases are involved. In contrast, combinations of genes provide much more useful information. Although gene expression profiling projects normally include the analysis of hundreds or thousands of genes in a single experiment, many of the genes thusanalyzed have very little or no disease classification potential. Such genes should be excluded from diagnosis chips, which optimally will contain only a small subset of genes. Focused chips of this type are also more amenable to the strict quality controls and conditioning that are required for clinical applications. If the analysis is extended to the protein level via immunohistochemistry, the number of genes to be tested should similarly not be too large if practical clinical utility is sought. In this paper, we have described a methodology for selecting a subset of genes that in combination have the greatest discriminating power for the four major subtypes of human gliomas. The 40 genes thus identified may potentially constitute a clinically useful diagnostic chip.
31 schema:editor N1e4cc3ca61f64aa79184042f15ec9c5b
32 schema:genre chapter
33 schema:inLanguage en
34 schema:isAccessibleForFree false
35 schema:isPartOf N22cea841405b4698b9c14a1be576e9db
36 schema:name Human Glioma Diagnosis from Gene Expression Data
37 schema:pagination 241-256
38 schema:productId N3aeb553618fc4d9eacaf0a29b6289e57
39 N7033ceef8f5f40d3b86e6676fc89a455
40 N9b9a848340d24955a8def231ba5d77ae
41 schema:publisher N0dd291025db74edd9b61654269d43667
42 schema:sameAs https://app.dimensions.ai/details/publication/pub.1013995771
43 https://doi.org/10.1007/0-306-47825-0_14
44 schema:sdDatePublished 2019-04-15T16:15
45 schema:sdLicense https://scigraph.springernature.com/explorer/license/
46 schema:sdPublisher N23dd2fb4224a42a0a917d13695f726d7
47 schema:url http://link.springer.com/10.1007/0-306-47825-0_14
48 sgo:license sg:explorer/license/
49 sgo:sdDataset chapters
50 rdf:type schema:Chapter
51 N0dd291025db74edd9b61654269d43667 schema:location Boston
52 schema:name Kluwer Academic Publishers
53 rdf:type schema:Organisation
54 N1e4cc3ca61f64aa79184042f15ec9c5b rdf:first Nd4936e32f50e49dfb4df95fd9cf48505
55 rdf:rest Nab557963956e414391a00a6a6ff48482
56 N22cea841405b4698b9c14a1be576e9db schema:isbn 1-4020-7023-3
57 schema:name Computational and Statistical Approaches to Genomics
58 rdf:type schema:Book
59 N23dd2fb4224a42a0a917d13695f726d7 schema:name Springer Nature - SN SciGraph project
60 rdf:type schema:Organization
61 N29b5130bdf464f3f8df86cb2e0d2e746 rdf:first sg:person.01243262074.71
62 rdf:rest Ne6a37f8349bf43cab13f02645fe7fb00
63 N3aeb553618fc4d9eacaf0a29b6289e57 schema:name readcube_id
64 schema:value 42ac29d7fba1bf842181e8331cb99b985a8a49dddc7eb87d87e752eaa8b2bc2a
65 rdf:type schema:PropertyValue
66 N60f85690a69d45b0bd8a2c7866ea74af rdf:first sg:person.012676151677.19
67 rdf:rest Ne83736cbca054e15ae89ada53935eb74
68 N61a3adeb7ca4441ba528bf6f0fab82c5 rdf:first sg:person.013732343337.08
69 rdf:rest Nde138f70b9ce4abfb5208a5227b16c69
70 N7033ceef8f5f40d3b86e6676fc89a455 schema:name doi
71 schema:value 10.1007/0-306-47825-0_14
72 rdf:type schema:PropertyValue
73 N964d5b6edd4e48629384286b4b0ec246 rdf:first sg:person.016111575304.39
74 rdf:rest Ne1783d2750844a528bf7320de53e3005
75 N9b9a848340d24955a8def231ba5d77ae schema:name dimensions_id
76 schema:value pub.1013995771
77 rdf:type schema:PropertyValue
78 Nab557963956e414391a00a6a6ff48482 rdf:first Ne91592dd2cd44ed3b986b8802c03bec4
79 rdf:rest rdf:nil
80 Nd4936e32f50e49dfb4df95fd9cf48505 schema:familyName Zhang
81 schema:givenName Wei
82 rdf:type schema:Person
83 Ndcc9a23961d945809d5efa594b0ba454 rdf:first sg:person.01354314446.15
84 rdf:rest Ne2fe20bf342a4630b73456bb2a3bf8af
85 Nde138f70b9ce4abfb5208a5227b16c69 rdf:first sg:person.010260560177.95
86 rdf:rest N29b5130bdf464f3f8df86cb2e0d2e746
87 Ne1783d2750844a528bf7320de53e3005 rdf:first sg:person.012724545020.23
88 rdf:rest rdf:nil
89 Ne2fe20bf342a4630b73456bb2a3bf8af rdf:first sg:person.0735450761.67
90 rdf:rest N60f85690a69d45b0bd8a2c7866ea74af
91 Ne6a37f8349bf43cab13f02645fe7fb00 rdf:first sg:person.01043314761.51
92 rdf:rest Ndcc9a23961d945809d5efa594b0ba454
93 Ne83736cbca054e15ae89ada53935eb74 rdf:first sg:person.013375073077.30
94 rdf:rest N964d5b6edd4e48629384286b4b0ec246
95 Ne91592dd2cd44ed3b986b8802c03bec4 schema:familyName Shmulevich
96 schema:givenName Ilya
97 rdf:type schema:Person
98 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
99 schema:name Biological Sciences
100 rdf:type schema:DefinedTerm
101 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
102 schema:name Genetics
103 rdf:type schema:DefinedTerm
104 sg:person.010260560177.95 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
105 schema:familyName Hess
106 schema:givenName Kenneth R.
107 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010260560177.95
108 rdf:type schema:Person
109 sg:person.01043314761.51 schema:affiliation https://www.grid.ac/institutes/grid.6986.1
110 schema:familyName Tabus
111 schema:givenName Ioan
112 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01043314761.51
113 rdf:type schema:Person
114 sg:person.01243262074.71 schema:affiliation https://www.grid.ac/institutes/grid.6986.1
115 schema:familyName Mircean
116 schema:givenName Cristian
117 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01243262074.71
118 rdf:type schema:Person
119 sg:person.012676151677.19 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
120 schema:familyName Aldape
121 schema:givenName Kenneth D.
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012676151677.19
123 rdf:type schema:Person
124 sg:person.012724545020.23 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
125 schema:familyName Zhang
126 schema:givenName Wei
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012724545020.23
128 rdf:type schema:Person
129 sg:person.013375073077.30 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
130 schema:familyName Bruner
131 schema:givenName Janet M.
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013375073077.30
133 rdf:type schema:Person
134 sg:person.01354314446.15 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
135 schema:familyName Shmulevich
136 schema:givenName Ilya
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01354314446.15
138 rdf:type schema:Person
139 sg:person.013732343337.08 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
140 schema:familyName Fuller
141 schema:givenName Gregory N.
142 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013732343337.08
143 rdf:type schema:Person
144 sg:person.016111575304.39 schema:affiliation https://www.grid.ac/institutes/grid.240145.6
145 schema:familyName Sawaya
146 schema:givenName Raymond A.
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016111575304.39
148 rdf:type schema:Person
149 sg:person.0735450761.67 schema:affiliation https://www.grid.ac/institutes/grid.415464.6
150 schema:familyName Rhee
151 schema:givenName Chang Hun
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0735450761.67
153 rdf:type schema:Person
154 sg:pub.10.1007/978-1-4615-3626-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004943787
155 https://doi.org/10.1007/978-1-4615-3626-0
156 rdf:type schema:CreativeWork
157 https://app.dimensions.ai/details/publication/pub.1004943787 schema:CreativeWork
158 https://app.dimensions.ai/details/publication/pub.1074521003 schema:CreativeWork
159 https://app.dimensions.ai/details/publication/pub.1074739236 schema:CreativeWork
160 https://doi.org/10.1002/0471200611 schema:sameAs https://app.dimensions.ai/details/publication/pub.1098661155
161 rdf:type schema:CreativeWork
162 https://doi.org/10.1016/s0002-9440(10)64076-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1018695866
163 rdf:type schema:CreativeWork
164 https://doi.org/10.1016/s0004-3702(97)00043-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1031014012
165 rdf:type schema:CreativeWork
166 https://doi.org/10.1089/10665270252833226 schema:sameAs https://app.dimensions.ai/details/publication/pub.1059204920
167 rdf:type schema:CreativeWork
168 https://doi.org/10.1093/bioinformatics/18.4.555 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008562089
169 rdf:type schema:CreativeWork
170 https://doi.org/10.1093/jnci/90.19.1473 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020269354
171 rdf:type schema:CreativeWork
172 https://doi.org/10.1093/jnen/61.1.58 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003356836
173 rdf:type schema:CreativeWork
174 https://doi.org/10.1111/j.1745-3984.2003.tb01108.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1052250038
175 rdf:type schema:CreativeWork
176 https://doi.org/10.1111/j.1750-3639.2002.tb00423.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005225494
177 rdf:type schema:CreativeWork
178 https://doi.org/10.1111/j.1750-3639.2002.tb00424.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034200843
179 rdf:type schema:CreativeWork
180 https://doi.org/10.1111/j.1750-3639.2002.tb00425.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1008867928
181 rdf:type schema:CreativeWork
182 https://doi.org/10.1111/j.1750-3639.2002.tb00426.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1006415372
183 rdf:type schema:CreativeWork
184 https://doi.org/10.1111/j.1750-3639.2002.tb00427.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1037188811
185 rdf:type schema:CreativeWork
186 https://doi.org/10.1117/12.469436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021561132
187 rdf:type schema:CreativeWork
188 https://doi.org/10.1126/science.286.5439.531 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042995627
189 rdf:type schema:CreativeWork
190 https://doi.org/10.1198/016214502753479248 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064197973
191 rdf:type schema:CreativeWork
192 https://doi.org/10.1200/jco.2000.18.3.636 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074583468
193 rdf:type schema:CreativeWork
194 https://doi.org/10.1214/aos/1176343886 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064407310
195 rdf:type schema:CreativeWork
196 https://doi.org/10.14670/hh-15.971 schema:sameAs https://app.dimensions.ai/details/publication/pub.1074691415
197 rdf:type schema:CreativeWork
198 https://doi.org/10.2307/1403797 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069474052
199 rdf:type schema:CreativeWork
200 https://www.grid.ac/institutes/grid.240145.6 schema:alternateName The University of Texas MD Anderson Cancer Center
201 schema:name Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
202 Department of Neurosurgery, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
203 Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas, USA
204 rdf:type schema:Organization
205 https://www.grid.ac/institutes/grid.415464.6 schema:alternateName Korea Institute of Radiological and Medical Sciences
206 schema:name Department of Neurosurgery, Korea Cancer Center Hospital, Seoul, Korea
207 rdf:type schema:Organization
208 https://www.grid.ac/institutes/grid.6986.1 schema:alternateName Tampere University of Technology
209 schema:name Institute of Signal Processing, Tampere University of Technology, Tampere, Finland
210 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...