Violation of Locality and Self-Checking Source: A Brief Account View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Dominic Mayers , Christian Tourenne

ABSTRACT

In 1991 Ekert proposed to use Bell inequalities in the so called E91 quantum key distribution protocol. This was the first alternative to the well known BB84 protocol of Bennett and Brassard. In 1992, Bennett, Brassard and Mermin explained that the E91 protocol is no more secure than the original BB84 protocol which do not use Bell inequalities at all. So, apparently, violation of locality was not useful in quantum cryptography. In 1998 Mayers and Yao restored back violation of locality in quantum cryptography with the concept of a self-checking source, a source of Bell states which is provided together with testing devices. The test is designed such that, if passed, the source and the testing devices are guaranteed to be identical modulo some isomorphism to the original specification. We discuss the self-checking source of Mayers and Yao, how it is related to the E91 protocol and the fair sampling assumption which was first used to address the detection loophole in Bell inequalities experiments. More... »

PAGES

269-276

References to SciGraph publications

  • 1992-01. Experimental quantum cryptography in JOURNAL OF CRYPTOLOGY
  • Book

    TITLE

    Quantum Communication, Computing, and Measurement 3

    ISBN

    0-306-46609-0

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43

    DOI

    http://dx.doi.org/10.1007/0-306-47114-0_43

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015695348


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "NEC (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419859.8", 
              "name": [
                "NEC Research Institute, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mayers", 
            "givenName": "Dominic", 
            "id": "sg:person.014634207425.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634207425.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Maharishi University of Management", 
              "id": "https://www.grid.ac/institutes/grid.259478.5", 
              "name": [
                "Maharishi University of Management, Fairfield, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tourenne", 
            "givenName": "Christian", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00191318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000187285", 
              "https://doi.org/10.1007/bf00191318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00191318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000187285", 
              "https://doi.org/10.1007/bf00191318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0217014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842033"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002", 
        "datePublishedReg": "2002-01-01", 
        "description": "In 1991 Ekert proposed to use Bell inequalities in the so called E91 quantum key distribution protocol. This was the first alternative to the well known BB84 protocol of Bennett and Brassard. In 1992, Bennett, Brassard and Mermin explained that the E91 protocol is no more secure than the original BB84 protocol which do not use Bell inequalities at all. So, apparently, violation of locality was not useful in quantum cryptography. In 1998 Mayers and Yao restored back violation of locality in quantum cryptography with the concept of a self-checking source, a source of Bell states which is provided together with testing devices. The test is designed such that, if passed, the source and the testing devices are guaranteed to be identical modulo some isomorphism to the original specification. We discuss the self-checking source of Mayers and Yao, how it is related to the E91 protocol and the fair sampling assumption which was first used to address the detection loophole in Bell inequalities experiments.", 
        "editor": [
          {
            "familyName": "Tombesi", 
            "givenName": "Paolo", 
            "type": "Person"
          }, 
          {
            "familyName": "Hirota", 
            "givenName": "Osamu", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/0-306-47114-0_43", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "0-306-46609-0"
          ], 
          "name": "Quantum Communication, Computing, and Measurement 3", 
          "type": "Book"
        }, 
        "name": "Violation of Locality and Self-Checking Source: A Brief Account", 
        "pagination": "269-276", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/0-306-47114-0_43"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4ac80f1ece1a6f32fd4011c6d2d04326d257e6528973a51f7c63f3f8c9263fe1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015695348"
            ]
          }
        ], 
        "publisher": {
          "location": "Boston", 
          "name": "Kluwer Academic Publishers", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/0-306-47114-0_43", 
          "https://app.dimensions.ai/details/publication/pub.1015695348"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T14:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000252.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/0-306-47114-0_43"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/0-306-47114-0_43 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author Ne06a873081884595b21c51e65d9a19ca
    4 schema:citation sg:pub.10.1007/bf00191318
    5 https://doi.org/10.1103/physrevlett.67.661
    6 https://doi.org/10.1103/physrevlett.68.557
    7 https://doi.org/10.1137/0217014
    8 schema:datePublished 2002
    9 schema:datePublishedReg 2002-01-01
    10 schema:description In 1991 Ekert proposed to use Bell inequalities in the so called E91 quantum key distribution protocol. This was the first alternative to the well known BB84 protocol of Bennett and Brassard. In 1992, Bennett, Brassard and Mermin explained that the E91 protocol is no more secure than the original BB84 protocol which do not use Bell inequalities at all. So, apparently, violation of locality was not useful in quantum cryptography. In 1998 Mayers and Yao restored back violation of locality in quantum cryptography with the concept of a self-checking source, a source of Bell states which is provided together with testing devices. The test is designed such that, if passed, the source and the testing devices are guaranteed to be identical modulo some isomorphism to the original specification. We discuss the self-checking source of Mayers and Yao, how it is related to the E91 protocol and the fair sampling assumption which was first used to address the detection loophole in Bell inequalities experiments.
    11 schema:editor N61a7135cf8334430a1a9df3f10eec8c5
    12 schema:genre chapter
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf Ne9ac85d420904008a13eb570e7f1ca6c
    16 schema:name Violation of Locality and Self-Checking Source: A Brief Account
    17 schema:pagination 269-276
    18 schema:productId Nad2ec8a1a56a4718ba666df0cee7ad5a
    19 Ne0a9a7dd250249fea9f0b65c5aa7f31a
    20 Ne285a04cbd5d4ddf8d87443040eccecf
    21 schema:publisher Ned501a8b05ca45178d71d177f73cc1d4
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015695348
    23 https://doi.org/10.1007/0-306-47114-0_43
    24 schema:sdDatePublished 2019-04-15T14:23
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N9a3c95034a3649e087dadd07dd3e3a00
    27 schema:url http://link.springer.com/10.1007/0-306-47114-0_43
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset chapters
    30 rdf:type schema:Chapter
    31 N5498fb7cea874ec9b88ff2c846c82f6a schema:affiliation https://www.grid.ac/institutes/grid.259478.5
    32 schema:familyName Tourenne
    33 schema:givenName Christian
    34 rdf:type schema:Person
    35 N61a7135cf8334430a1a9df3f10eec8c5 rdf:first Na450ee80662a4c3985adbaf957f82803
    36 rdf:rest Nc4cc3ffeb9f94357bd9d64c33824a5e3
    37 N74bbb426a3ab45758bc7bc16b3f3f133 rdf:first N5498fb7cea874ec9b88ff2c846c82f6a
    38 rdf:rest rdf:nil
    39 N9a3c95034a3649e087dadd07dd3e3a00 schema:name Springer Nature - SN SciGraph project
    40 rdf:type schema:Organization
    41 Na450ee80662a4c3985adbaf957f82803 schema:familyName Tombesi
    42 schema:givenName Paolo
    43 rdf:type schema:Person
    44 Nad2ec8a1a56a4718ba666df0cee7ad5a schema:name readcube_id
    45 schema:value 4ac80f1ece1a6f32fd4011c6d2d04326d257e6528973a51f7c63f3f8c9263fe1
    46 rdf:type schema:PropertyValue
    47 Nc4cc3ffeb9f94357bd9d64c33824a5e3 rdf:first Ned58ae706e934ed2b375a5326f618052
    48 rdf:rest rdf:nil
    49 Ne06a873081884595b21c51e65d9a19ca rdf:first sg:person.014634207425.30
    50 rdf:rest N74bbb426a3ab45758bc7bc16b3f3f133
    51 Ne0a9a7dd250249fea9f0b65c5aa7f31a schema:name dimensions_id
    52 schema:value pub.1015695348
    53 rdf:type schema:PropertyValue
    54 Ne285a04cbd5d4ddf8d87443040eccecf schema:name doi
    55 schema:value 10.1007/0-306-47114-0_43
    56 rdf:type schema:PropertyValue
    57 Ne9ac85d420904008a13eb570e7f1ca6c schema:isbn 0-306-46609-0
    58 schema:name Quantum Communication, Computing, and Measurement 3
    59 rdf:type schema:Book
    60 Ned501a8b05ca45178d71d177f73cc1d4 schema:location Boston
    61 schema:name Kluwer Academic Publishers
    62 rdf:type schema:Organisation
    63 Ned58ae706e934ed2b375a5326f618052 schema:familyName Hirota
    64 schema:givenName Osamu
    65 rdf:type schema:Person
    66 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Physical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Quantum Physics
    71 rdf:type schema:DefinedTerm
    72 sg:person.014634207425.30 schema:affiliation https://www.grid.ac/institutes/grid.419859.8
    73 schema:familyName Mayers
    74 schema:givenName Dominic
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634207425.30
    76 rdf:type schema:Person
    77 sg:pub.10.1007/bf00191318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000187285
    78 https://doi.org/10.1007/bf00191318
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1103/physrevlett.67.661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803926
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1103/physrevlett.68.557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804963
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1137/0217014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842033
    85 rdf:type schema:CreativeWork
    86 https://www.grid.ac/institutes/grid.259478.5 schema:alternateName Maharishi University of Management
    87 schema:name Maharishi University of Management, Fairfield, IA, USA
    88 rdf:type schema:Organization
    89 https://www.grid.ac/institutes/grid.419859.8 schema:alternateName NEC (United States)
    90 schema:name NEC Research Institute, Princeton, NJ, USA
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...