Violation of Locality and Self-Checking Source: A Brief Account View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Dominic Mayers , Christian Tourenne

ABSTRACT

In 1991 Ekert proposed to use Bell inequalities in the so called E91 quantum key distribution protocol. This was the first alternative to the well known BB84 protocol of Bennett and Brassard. In 1992, Bennett, Brassard and Mermin explained that the E91 protocol is no more secure than the original BB84 protocol which do not use Bell inequalities at all. So, apparently, violation of locality was not useful in quantum cryptography. In 1998 Mayers and Yao restored back violation of locality in quantum cryptography with the concept of a self-checking source, a source of Bell states which is provided together with testing devices. The test is designed such that, if passed, the source and the testing devices are guaranteed to be identical modulo some isomorphism to the original specification. We discuss the self-checking source of Mayers and Yao, how it is related to the E91 protocol and the fair sampling assumption which was first used to address the detection loophole in Bell inequalities experiments. More... »

PAGES

269-276

References to SciGraph publications

  • 1992-01. Experimental quantum cryptography in JOURNAL OF CRYPTOLOGY
  • Book

    TITLE

    Quantum Communication, Computing, and Measurement 3

    ISBN

    0-306-46609-0

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43

    DOI

    http://dx.doi.org/10.1007/0-306-47114-0_43

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015695348


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "NEC (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419859.8", 
              "name": [
                "NEC Research Institute, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mayers", 
            "givenName": "Dominic", 
            "id": "sg:person.014634207425.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634207425.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Maharishi University of Management", 
              "id": "https://www.grid.ac/institutes/grid.259478.5", 
              "name": [
                "Maharishi University of Management, Fairfield, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tourenne", 
            "givenName": "Christian", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00191318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000187285", 
              "https://doi.org/10.1007/bf00191318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00191318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000187285", 
              "https://doi.org/10.1007/bf00191318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0217014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842033"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002", 
        "datePublishedReg": "2002-01-01", 
        "description": "In 1991 Ekert proposed to use Bell inequalities in the so called E91 quantum key distribution protocol. This was the first alternative to the well known BB84 protocol of Bennett and Brassard. In 1992, Bennett, Brassard and Mermin explained that the E91 protocol is no more secure than the original BB84 protocol which do not use Bell inequalities at all. So, apparently, violation of locality was not useful in quantum cryptography. In 1998 Mayers and Yao restored back violation of locality in quantum cryptography with the concept of a self-checking source, a source of Bell states which is provided together with testing devices. The test is designed such that, if passed, the source and the testing devices are guaranteed to be identical modulo some isomorphism to the original specification. We discuss the self-checking source of Mayers and Yao, how it is related to the E91 protocol and the fair sampling assumption which was first used to address the detection loophole in Bell inequalities experiments.", 
        "editor": [
          {
            "familyName": "Tombesi", 
            "givenName": "Paolo", 
            "type": "Person"
          }, 
          {
            "familyName": "Hirota", 
            "givenName": "Osamu", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/0-306-47114-0_43", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "0-306-46609-0"
          ], 
          "name": "Quantum Communication, Computing, and Measurement 3", 
          "type": "Book"
        }, 
        "name": "Violation of Locality and Self-Checking Source: A Brief Account", 
        "pagination": "269-276", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/0-306-47114-0_43"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4ac80f1ece1a6f32fd4011c6d2d04326d257e6528973a51f7c63f3f8c9263fe1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015695348"
            ]
          }
        ], 
        "publisher": {
          "location": "Boston", 
          "name": "Kluwer Academic Publishers", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/0-306-47114-0_43", 
          "https://app.dimensions.ai/details/publication/pub.1015695348"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T14:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000252.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/0-306-47114-0_43"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/0-306-47114-0_43 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author Nf797dc03b8e8489f9e29f72fc7e5e8a1
    4 schema:citation sg:pub.10.1007/bf00191318
    5 https://doi.org/10.1103/physrevlett.67.661
    6 https://doi.org/10.1103/physrevlett.68.557
    7 https://doi.org/10.1137/0217014
    8 schema:datePublished 2002
    9 schema:datePublishedReg 2002-01-01
    10 schema:description In 1991 Ekert proposed to use Bell inequalities in the so called E91 quantum key distribution protocol. This was the first alternative to the well known BB84 protocol of Bennett and Brassard. In 1992, Bennett, Brassard and Mermin explained that the E91 protocol is no more secure than the original BB84 protocol which do not use Bell inequalities at all. So, apparently, violation of locality was not useful in quantum cryptography. In 1998 Mayers and Yao restored back violation of locality in quantum cryptography with the concept of a self-checking source, a source of Bell states which is provided together with testing devices. The test is designed such that, if passed, the source and the testing devices are guaranteed to be identical modulo some isomorphism to the original specification. We discuss the self-checking source of Mayers and Yao, how it is related to the E91 protocol and the fair sampling assumption which was first used to address the detection loophole in Bell inequalities experiments.
    11 schema:editor N59580811cd204c90b260ef778b3c3812
    12 schema:genre chapter
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf Nbde0d2c7c58c4d65ba78a383d3cdb1b4
    16 schema:name Violation of Locality and Self-Checking Source: A Brief Account
    17 schema:pagination 269-276
    18 schema:productId N08b484b68d7d48f08a31e1784eafff14
    19 N1e9c33f24ea54e2387c16ae964c6396d
    20 N29ed910dacee4f5598788e0c0a72be08
    21 schema:publisher Nf8131939cba245a9a95400a1bd544335
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015695348
    23 https://doi.org/10.1007/0-306-47114-0_43
    24 schema:sdDatePublished 2019-04-15T14:23
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher N86a5bb34d1e346578d3514663474fd80
    27 schema:url http://link.springer.com/10.1007/0-306-47114-0_43
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset chapters
    30 rdf:type schema:Chapter
    31 N08b484b68d7d48f08a31e1784eafff14 schema:name doi
    32 schema:value 10.1007/0-306-47114-0_43
    33 rdf:type schema:PropertyValue
    34 N1e9c33f24ea54e2387c16ae964c6396d schema:name readcube_id
    35 schema:value 4ac80f1ece1a6f32fd4011c6d2d04326d257e6528973a51f7c63f3f8c9263fe1
    36 rdf:type schema:PropertyValue
    37 N29ed910dacee4f5598788e0c0a72be08 schema:name dimensions_id
    38 schema:value pub.1015695348
    39 rdf:type schema:PropertyValue
    40 N59580811cd204c90b260ef778b3c3812 rdf:first N9280d7c3b7b743159c34c8e793f1701b
    41 rdf:rest N78e86a6d7d584b49998c4dbc3ce56eb9
    42 N652b02298616462a8b851b9be7e0178c schema:familyName Hirota
    43 schema:givenName Osamu
    44 rdf:type schema:Person
    45 N78e86a6d7d584b49998c4dbc3ce56eb9 rdf:first N652b02298616462a8b851b9be7e0178c
    46 rdf:rest rdf:nil
    47 N86a5bb34d1e346578d3514663474fd80 schema:name Springer Nature - SN SciGraph project
    48 rdf:type schema:Organization
    49 N9280d7c3b7b743159c34c8e793f1701b schema:familyName Tombesi
    50 schema:givenName Paolo
    51 rdf:type schema:Person
    52 Na71fe686980e42ba943c4ddf0c550a49 rdf:first Nf306f1d9cebc473ab657e8a00495c0ed
    53 rdf:rest rdf:nil
    54 Nbde0d2c7c58c4d65ba78a383d3cdb1b4 schema:isbn 0-306-46609-0
    55 schema:name Quantum Communication, Computing, and Measurement 3
    56 rdf:type schema:Book
    57 Nf306f1d9cebc473ab657e8a00495c0ed schema:affiliation https://www.grid.ac/institutes/grid.259478.5
    58 schema:familyName Tourenne
    59 schema:givenName Christian
    60 rdf:type schema:Person
    61 Nf797dc03b8e8489f9e29f72fc7e5e8a1 rdf:first sg:person.014634207425.30
    62 rdf:rest Na71fe686980e42ba943c4ddf0c550a49
    63 Nf8131939cba245a9a95400a1bd544335 schema:location Boston
    64 schema:name Kluwer Academic Publishers
    65 rdf:type schema:Organisation
    66 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Physical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Quantum Physics
    71 rdf:type schema:DefinedTerm
    72 sg:person.014634207425.30 schema:affiliation https://www.grid.ac/institutes/grid.419859.8
    73 schema:familyName Mayers
    74 schema:givenName Dominic
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634207425.30
    76 rdf:type schema:Person
    77 sg:pub.10.1007/bf00191318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000187285
    78 https://doi.org/10.1007/bf00191318
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1103/physrevlett.67.661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803926
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1103/physrevlett.68.557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804963
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1137/0217014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842033
    85 rdf:type schema:CreativeWork
    86 https://www.grid.ac/institutes/grid.259478.5 schema:alternateName Maharishi University of Management
    87 schema:name Maharishi University of Management, Fairfield, IA, USA
    88 rdf:type schema:Organization
    89 https://www.grid.ac/institutes/grid.419859.8 schema:alternateName NEC (United States)
    90 schema:name NEC Research Institute, Princeton, NJ, USA
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...