Violation of Locality and Self-Checking Source: A Brief Account View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Dominic Mayers , Christian Tourenne

ABSTRACT

In 1991 Ekert proposed to use Bell inequalities in the so called E91 quantum key distribution protocol. This was the first alternative to the well known BB84 protocol of Bennett and Brassard. In 1992, Bennett, Brassard and Mermin explained that the E91 protocol is no more secure than the original BB84 protocol which do not use Bell inequalities at all. So, apparently, violation of locality was not useful in quantum cryptography. In 1998 Mayers and Yao restored back violation of locality in quantum cryptography with the concept of a self-checking source, a source of Bell states which is provided together with testing devices. The test is designed such that, if passed, the source and the testing devices are guaranteed to be identical modulo some isomorphism to the original specification. We discuss the self-checking source of Mayers and Yao, how it is related to the E91 protocol and the fair sampling assumption which was first used to address the detection loophole in Bell inequalities experiments. More... »

PAGES

269-276

References to SciGraph publications

  • 1992-01. Experimental quantum cryptography in JOURNAL OF CRYPTOLOGY
  • Book

    TITLE

    Quantum Communication, Computing, and Measurement 3

    ISBN

    0-306-46609-0

    Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43

    DOI

    http://dx.doi.org/10.1007/0-306-47114-0_43

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1015695348


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0206", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Quantum Physics", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/02", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Physical Sciences", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "NEC (United States)", 
              "id": "https://www.grid.ac/institutes/grid.419859.8", 
              "name": [
                "NEC Research Institute, Princeton, NJ, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Mayers", 
            "givenName": "Dominic", 
            "id": "sg:person.014634207425.30", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634207425.30"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Maharishi University of Management", 
              "id": "https://www.grid.ac/institutes/grid.259478.5", 
              "name": [
                "Maharishi University of Management, Fairfield, IA, USA"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Tourenne", 
            "givenName": "Christian", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00191318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000187285", 
              "https://doi.org/10.1007/bf00191318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00191318", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1000187285", 
              "https://doi.org/10.1007/bf00191318"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.67.661", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060803926"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1103/physrevlett.68.557", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060804963"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1137/0217014", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1062842033"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2002", 
        "datePublishedReg": "2002-01-01", 
        "description": "In 1991 Ekert proposed to use Bell inequalities in the so called E91 quantum key distribution protocol. This was the first alternative to the well known BB84 protocol of Bennett and Brassard. In 1992, Bennett, Brassard and Mermin explained that the E91 protocol is no more secure than the original BB84 protocol which do not use Bell inequalities at all. So, apparently, violation of locality was not useful in quantum cryptography. In 1998 Mayers and Yao restored back violation of locality in quantum cryptography with the concept of a self-checking source, a source of Bell states which is provided together with testing devices. The test is designed such that, if passed, the source and the testing devices are guaranteed to be identical modulo some isomorphism to the original specification. We discuss the self-checking source of Mayers and Yao, how it is related to the E91 protocol and the fair sampling assumption which was first used to address the detection loophole in Bell inequalities experiments.", 
        "editor": [
          {
            "familyName": "Tombesi", 
            "givenName": "Paolo", 
            "type": "Person"
          }, 
          {
            "familyName": "Hirota", 
            "givenName": "Osamu", 
            "type": "Person"
          }
        ], 
        "genre": "chapter", 
        "id": "sg:pub.10.1007/0-306-47114-0_43", 
        "inLanguage": [
          "en"
        ], 
        "isAccessibleForFree": false, 
        "isPartOf": {
          "isbn": [
            "0-306-46609-0"
          ], 
          "name": "Quantum Communication, Computing, and Measurement 3", 
          "type": "Book"
        }, 
        "name": "Violation of Locality and Self-Checking Source: A Brief Account", 
        "pagination": "269-276", 
        "productId": [
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1007/0-306-47114-0_43"
            ]
          }, 
          {
            "name": "readcube_id", 
            "type": "PropertyValue", 
            "value": [
              "4ac80f1ece1a6f32fd4011c6d2d04326d257e6528973a51f7c63f3f8c9263fe1"
            ]
          }, 
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1015695348"
            ]
          }
        ], 
        "publisher": {
          "location": "Boston", 
          "name": "Kluwer Academic Publishers", 
          "type": "Organisation"
        }, 
        "sameAs": [
          "https://doi.org/10.1007/0-306-47114-0_43", 
          "https://app.dimensions.ai/details/publication/pub.1015695348"
        ], 
        "sdDataset": "chapters", 
        "sdDatePublished": "2019-04-15T14:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8669_00000252.jsonl", 
        "type": "Chapter", 
        "url": "http://link.springer.com/10.1007/0-306-47114-0_43"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-306-47114-0_43'


     

    This table displays all metadata directly associated to this object as RDF triples.

    91 TRIPLES      23 PREDICATES      31 URIs      20 LITERALS      8 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1007/0-306-47114-0_43 schema:about anzsrc-for:02
    2 anzsrc-for:0206
    3 schema:author N3aadffc1ea4c4ae789841fd8d62d5511
    4 schema:citation sg:pub.10.1007/bf00191318
    5 https://doi.org/10.1103/physrevlett.67.661
    6 https://doi.org/10.1103/physrevlett.68.557
    7 https://doi.org/10.1137/0217014
    8 schema:datePublished 2002
    9 schema:datePublishedReg 2002-01-01
    10 schema:description In 1991 Ekert proposed to use Bell inequalities in the so called E91 quantum key distribution protocol. This was the first alternative to the well known BB84 protocol of Bennett and Brassard. In 1992, Bennett, Brassard and Mermin explained that the E91 protocol is no more secure than the original BB84 protocol which do not use Bell inequalities at all. So, apparently, violation of locality was not useful in quantum cryptography. In 1998 Mayers and Yao restored back violation of locality in quantum cryptography with the concept of a self-checking source, a source of Bell states which is provided together with testing devices. The test is designed such that, if passed, the source and the testing devices are guaranteed to be identical modulo some isomorphism to the original specification. We discuss the self-checking source of Mayers and Yao, how it is related to the E91 protocol and the fair sampling assumption which was first used to address the detection loophole in Bell inequalities experiments.
    11 schema:editor Nc8830a643f544b63987f18f24f6812dc
    12 schema:genre chapter
    13 schema:inLanguage en
    14 schema:isAccessibleForFree false
    15 schema:isPartOf Nbc3c29b106b7464ebaa4c62411a73fd5
    16 schema:name Violation of Locality and Self-Checking Source: A Brief Account
    17 schema:pagination 269-276
    18 schema:productId N0d82e64469bf405b86f7e434384f0e50
    19 N57fa0832e69e492ab6ee6b070eef38d6
    20 Nbd5425245f084ed598defe8ae54dd2dd
    21 schema:publisher N6cfcd718a3d5467fa762e312d726ff5b
    22 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015695348
    23 https://doi.org/10.1007/0-306-47114-0_43
    24 schema:sdDatePublished 2019-04-15T14:23
    25 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    26 schema:sdPublisher Nf411c5c679a44bf1b23adda797c5cac9
    27 schema:url http://link.springer.com/10.1007/0-306-47114-0_43
    28 sgo:license sg:explorer/license/
    29 sgo:sdDataset chapters
    30 rdf:type schema:Chapter
    31 N0d82e64469bf405b86f7e434384f0e50 schema:name doi
    32 schema:value 10.1007/0-306-47114-0_43
    33 rdf:type schema:PropertyValue
    34 N18f68c0f1bae4cedb6782354b3d06f64 schema:affiliation https://www.grid.ac/institutes/grid.259478.5
    35 schema:familyName Tourenne
    36 schema:givenName Christian
    37 rdf:type schema:Person
    38 N3aadffc1ea4c4ae789841fd8d62d5511 rdf:first sg:person.014634207425.30
    39 rdf:rest N3e4fac4b306f4029b41a8029fc700575
    40 N3e4fac4b306f4029b41a8029fc700575 rdf:first N18f68c0f1bae4cedb6782354b3d06f64
    41 rdf:rest rdf:nil
    42 N48623cc8561b4dbf9ba37c5dbca142a7 rdf:first Nb46cc597f50a46d998f3ee8c2cf76823
    43 rdf:rest rdf:nil
    44 N57fa0832e69e492ab6ee6b070eef38d6 schema:name dimensions_id
    45 schema:value pub.1015695348
    46 rdf:type schema:PropertyValue
    47 N6cfcd718a3d5467fa762e312d726ff5b schema:location Boston
    48 schema:name Kluwer Academic Publishers
    49 rdf:type schema:Organisation
    50 Na41dc38a42dc493ab2281de20ca45670 schema:familyName Tombesi
    51 schema:givenName Paolo
    52 rdf:type schema:Person
    53 Nb46cc597f50a46d998f3ee8c2cf76823 schema:familyName Hirota
    54 schema:givenName Osamu
    55 rdf:type schema:Person
    56 Nbc3c29b106b7464ebaa4c62411a73fd5 schema:isbn 0-306-46609-0
    57 schema:name Quantum Communication, Computing, and Measurement 3
    58 rdf:type schema:Book
    59 Nbd5425245f084ed598defe8ae54dd2dd schema:name readcube_id
    60 schema:value 4ac80f1ece1a6f32fd4011c6d2d04326d257e6528973a51f7c63f3f8c9263fe1
    61 rdf:type schema:PropertyValue
    62 Nc8830a643f544b63987f18f24f6812dc rdf:first Na41dc38a42dc493ab2281de20ca45670
    63 rdf:rest N48623cc8561b4dbf9ba37c5dbca142a7
    64 Nf411c5c679a44bf1b23adda797c5cac9 schema:name Springer Nature - SN SciGraph project
    65 rdf:type schema:Organization
    66 anzsrc-for:02 schema:inDefinedTermSet anzsrc-for:
    67 schema:name Physical Sciences
    68 rdf:type schema:DefinedTerm
    69 anzsrc-for:0206 schema:inDefinedTermSet anzsrc-for:
    70 schema:name Quantum Physics
    71 rdf:type schema:DefinedTerm
    72 sg:person.014634207425.30 schema:affiliation https://www.grid.ac/institutes/grid.419859.8
    73 schema:familyName Mayers
    74 schema:givenName Dominic
    75 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014634207425.30
    76 rdf:type schema:Person
    77 sg:pub.10.1007/bf00191318 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000187285
    78 https://doi.org/10.1007/bf00191318
    79 rdf:type schema:CreativeWork
    80 https://doi.org/10.1103/physrevlett.67.661 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060803926
    81 rdf:type schema:CreativeWork
    82 https://doi.org/10.1103/physrevlett.68.557 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060804963
    83 rdf:type schema:CreativeWork
    84 https://doi.org/10.1137/0217014 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062842033
    85 rdf:type schema:CreativeWork
    86 https://www.grid.ac/institutes/grid.259478.5 schema:alternateName Maharishi University of Management
    87 schema:name Maharishi University of Management, Fairfield, IA, USA
    88 rdf:type schema:Organization
    89 https://www.grid.ac/institutes/grid.419859.8 schema:alternateName NEC (United States)
    90 schema:name NEC Research Institute, Princeton, NJ, USA
    91 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...