A Fictitious-Domain Method with Distributed Multiplier for the Stokes Problem View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Vivette Girault , Roland Glowinski , T. W. Pan

ABSTRACT

This article is devoted to the numerical analysis of a fictitious domain method for the Stokes problem, where the boundary condition is enforced weakly by means of a multiplier defined in a portion of the domain. In practice, this is applied for example to the sedimentation of many particles in a fluid. It is found that the multiplier is divergence-free. We present here sufficient conditions on the relative mesh sizes for convergence of the discrete method. Also, we show how the constraint on the divergence of the discrete multiplier can be relaxed when such a sedimentation problem is discretized. More... »

PAGES

159-174

References to SciGraph publications

Book

TITLE

Applied Nonlinear Analysis

ISBN

978-0-306-46303-7
978-0-306-47096-7

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-306-47096-9_12

DOI

http://dx.doi.org/10.1007/0-306-47096-9_12

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1029271802


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0915", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Interdisciplinary Engineering", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/09", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Engineering", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "familyName": "Girault", 
        "givenName": "Vivette", 
        "id": "sg:person.014207716133.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207716133.86"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Glowinski", 
        "givenName": "Roland", 
        "id": "sg:person.01167212034.31", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167212034.31"
        ], 
        "type": "Person"
      }, 
      {
        "familyName": "Pan", 
        "givenName": "T. W.", 
        "id": "sg:person.013505452521.86", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1090/s0025-5718-1991-1052086-4", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006772418"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://app.dimensions.ai/details/publication/pub.1024684784", 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3658-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024684784", 
          "https://doi.org/10.1007/978-1-4757-3658-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/978-1-4757-3658-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024684784", 
          "https://doi.org/10.1007/978-1-4757-3658-8"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0045-7825(97)00116-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042291480"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1137/s0036142995293766", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062877321"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1051/m2an/197509r200771", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083713192"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1090/conm/218/03006", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1089203719"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "This article is devoted to the numerical analysis of a fictitious domain method for the Stokes problem, where the boundary condition is enforced weakly by means of a multiplier defined in a portion of the domain. In practice, this is applied for example to the sedimentation of many particles in a fluid. It is found that the multiplier is divergence-free. We present here sufficient conditions on the relative mesh sizes for convergence of the discrete method. Also, we show how the constraint on the divergence of the discrete multiplier can be relaxed when such a sedimentation problem is discretized.", 
    "editor": [
      {
        "familyName": "Sequeira", 
        "givenName": "Ad\u00e9lia", 
        "type": "Person"
      }, 
      {
        "familyName": "da Veiga", 
        "givenName": "Hugo Beir\u00e3o", 
        "type": "Person"
      }, 
      {
        "familyName": "Videman", 
        "givenName": "Juha Hans", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-306-47096-9_12", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-306-46303-7", 
        "978-0-306-47096-7"
      ], 
      "name": "Applied Nonlinear Analysis", 
      "type": "Book"
    }, 
    "name": "A Fictitious-Domain Method with Distributed Multiplier for the Stokes Problem", 
    "pagination": "159-174", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-306-47096-9_12"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "8b728d1f516e019a3e71b77b6d20fff2b9a661017326e13ebfb02d4655ebf063"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1029271802"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston, MA", 
      "name": "Springer US", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-306-47096-9_12", 
      "https://app.dimensions.ai/details/publication/pub.1029271802"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T19:09", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8684_00000261.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/0-306-47096-9_12"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-306-47096-9_12'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-306-47096-9_12'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-306-47096-9_12'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-306-47096-9_12'


 

This table displays all metadata directly associated to this object as RDF triples.

104 TRIPLES      23 PREDICATES      34 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-306-47096-9_12 schema:about anzsrc-for:09
2 anzsrc-for:0915
3 schema:author N31ea6efce00c42a4b24436caea296202
4 schema:citation sg:pub.10.1007/978-1-4757-3658-8
5 https://app.dimensions.ai/details/publication/pub.1024684784
6 https://doi.org/10.1016/s0045-7825(97)00116-3
7 https://doi.org/10.1051/m2an/197509r200771
8 https://doi.org/10.1090/conm/218/03006
9 https://doi.org/10.1090/s0025-5718-1991-1052086-4
10 https://doi.org/10.1137/s0036142995293766
11 schema:datePublished 2002
12 schema:datePublishedReg 2002-01-01
13 schema:description This article is devoted to the numerical analysis of a fictitious domain method for the Stokes problem, where the boundary condition is enforced weakly by means of a multiplier defined in a portion of the domain. In practice, this is applied for example to the sedimentation of many particles in a fluid. It is found that the multiplier is divergence-free. We present here sufficient conditions on the relative mesh sizes for convergence of the discrete method. Also, we show how the constraint on the divergence of the discrete multiplier can be relaxed when such a sedimentation problem is discretized.
14 schema:editor Nc41a210db9ad4a1b82cabb51a9f40d93
15 schema:genre chapter
16 schema:inLanguage en
17 schema:isAccessibleForFree false
18 schema:isPartOf N9d828df2937e4f848ad7388fbe881468
19 schema:name A Fictitious-Domain Method with Distributed Multiplier for the Stokes Problem
20 schema:pagination 159-174
21 schema:productId N16efbc0e2464457bb34f7c6be06cd072
22 N1f0c2939b2d64466bd095c1f2b43f39e
23 Neb7175823fd34621a2ead5813c849e25
24 schema:publisher N7b3662ca63ad4d388551d993da433f39
25 schema:sameAs https://app.dimensions.ai/details/publication/pub.1029271802
26 https://doi.org/10.1007/0-306-47096-9_12
27 schema:sdDatePublished 2019-04-15T19:09
28 schema:sdLicense https://scigraph.springernature.com/explorer/license/
29 schema:sdPublisher N67899ff3f6ad4004b883b33454cca534
30 schema:url http://link.springer.com/10.1007/0-306-47096-9_12
31 sgo:license sg:explorer/license/
32 sgo:sdDataset chapters
33 rdf:type schema:Chapter
34 N16efbc0e2464457bb34f7c6be06cd072 schema:name doi
35 schema:value 10.1007/0-306-47096-9_12
36 rdf:type schema:PropertyValue
37 N1f0c2939b2d64466bd095c1f2b43f39e schema:name readcube_id
38 schema:value 8b728d1f516e019a3e71b77b6d20fff2b9a661017326e13ebfb02d4655ebf063
39 rdf:type schema:PropertyValue
40 N31ea6efce00c42a4b24436caea296202 rdf:first sg:person.014207716133.86
41 rdf:rest N3e209c5be04f4b14ad19e66c39589f60
42 N3e209c5be04f4b14ad19e66c39589f60 rdf:first sg:person.01167212034.31
43 rdf:rest N5b61999c51e64d0084ea7da8787889c3
44 N5875dae72f7c49fe89cbf1bf0dfaec3d rdf:first Nd110102e9ada457fb1dab33c33bc6535
45 rdf:rest rdf:nil
46 N5b61999c51e64d0084ea7da8787889c3 rdf:first sg:person.013505452521.86
47 rdf:rest rdf:nil
48 N67899ff3f6ad4004b883b33454cca534 schema:name Springer Nature - SN SciGraph project
49 rdf:type schema:Organization
50 N7b3662ca63ad4d388551d993da433f39 schema:location Boston, MA
51 schema:name Springer US
52 rdf:type schema:Organisation
53 N856e5606779349a886a993de58faafd9 schema:familyName Sequeira
54 schema:givenName Adélia
55 rdf:type schema:Person
56 N9c5730a64feb4bbeadd75aae28813e17 schema:familyName da Veiga
57 schema:givenName Hugo Beirão
58 rdf:type schema:Person
59 N9d828df2937e4f848ad7388fbe881468 schema:isbn 978-0-306-46303-7
60 978-0-306-47096-7
61 schema:name Applied Nonlinear Analysis
62 rdf:type schema:Book
63 Nb02d1d0da1e9487d837e112b7d743c6f rdf:first N9c5730a64feb4bbeadd75aae28813e17
64 rdf:rest N5875dae72f7c49fe89cbf1bf0dfaec3d
65 Nc41a210db9ad4a1b82cabb51a9f40d93 rdf:first N856e5606779349a886a993de58faafd9
66 rdf:rest Nb02d1d0da1e9487d837e112b7d743c6f
67 Nd110102e9ada457fb1dab33c33bc6535 schema:familyName Videman
68 schema:givenName Juha Hans
69 rdf:type schema:Person
70 Neb7175823fd34621a2ead5813c849e25 schema:name dimensions_id
71 schema:value pub.1029271802
72 rdf:type schema:PropertyValue
73 anzsrc-for:09 schema:inDefinedTermSet anzsrc-for:
74 schema:name Engineering
75 rdf:type schema:DefinedTerm
76 anzsrc-for:0915 schema:inDefinedTermSet anzsrc-for:
77 schema:name Interdisciplinary Engineering
78 rdf:type schema:DefinedTerm
79 sg:person.01167212034.31 schema:familyName Glowinski
80 schema:givenName Roland
81 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01167212034.31
82 rdf:type schema:Person
83 sg:person.013505452521.86 schema:familyName Pan
84 schema:givenName T. W.
85 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.013505452521.86
86 rdf:type schema:Person
87 sg:person.014207716133.86 schema:familyName Girault
88 schema:givenName Vivette
89 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.014207716133.86
90 rdf:type schema:Person
91 sg:pub.10.1007/978-1-4757-3658-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024684784
92 https://doi.org/10.1007/978-1-4757-3658-8
93 rdf:type schema:CreativeWork
94 https://app.dimensions.ai/details/publication/pub.1024684784 schema:CreativeWork
95 https://doi.org/10.1016/s0045-7825(97)00116-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042291480
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1051/m2an/197509r200771 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083713192
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1090/conm/218/03006 schema:sameAs https://app.dimensions.ai/details/publication/pub.1089203719
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1090/s0025-5718-1991-1052086-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006772418
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1137/s0036142995293766 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062877321
104 rdf:type schema:CreativeWork
 




Preview window. Press ESC to close (or click here)


...