Anisotropy of Wetting of PB Crystals By Their Own Melt and By Liquid GA-PB Alloys View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002

AUTHORS

Dominique Chatain , Paul Wynblatt

ABSTRACT

In a first set of experiments, observations of anisotropic wetting of different orientations of a macroscopic (milimeter-sized) solid single crystal of Pb by pure liquid Pb have been made at the melting point. It was found that the surface orientations which undergo premelting transitions below the bulk melting point are perfectly wetted by the liquid, whereas the {100} and {111} facets, which do not premelt, are only partially wetted. On those surfaces, wetting improves with decreasing atomic density of the surface. In a second set of observations on Pb-Ga alloys, wetting of a mezoscopic (micronsized) solid single crystal of Pb by liquid Ga was studied in a scanning Auger microprobe. At relatively low temperatures, below the premelting of the solid Pb surfaces, liquid Ga droplets are found to reside only at the {210} orientations of Pb surface. As the temperature is raised above that where most Pb surface orientations undergo premelting, the anisotropic distribution of Ga droplets disappears. In both cases, the anisotropy of wetting is driven by the anisotropy of surface energy of the solid. The degree of wetting is shown to be strongly correlated to the degree of premelting at the solid surface. More... »

PAGES

53-58

Book

TITLE

Dynamics of Crystal Surfaces and Interfaces

ISBN

0-306-45619-2

Author Affiliations

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-306-47071-3_4

DOI

http://dx.doi.org/10.1007/0-306-47071-3_4

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1032841810


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0306", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Physical Chemistry (incl. Structural)", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/03", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Chemical Sciences", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "name": [
            "Centre de Recherche sur les M\u00e9canismes de la Croissance Cristalline, CNRS, Campus de Luminy, Case 913, 13288\u00a0Marseille Cedex 9, France"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Chatain", 
        "givenName": "Dominique", 
        "id": "sg:person.011023023233.37", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011023023233.37"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Carnegie Mellon University", 
          "id": "https://www.grid.ac/institutes/grid.147455.6", 
          "name": [
            "Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA\u00a015213, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Wynblatt", 
        "givenName": "Paul", 
        "id": "sg:person.015403666233.15", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403666233.15"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0039-6028(89)90577-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003201392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(89)90577-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003201392"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(76)90236-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006891167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(76)90236-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006891167"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0039-6028(83)80036-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008376153"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(93)91471-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013296366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(93)91471-z", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1013296366"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(68)90132-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017833019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(68)90132-5", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017833019"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(75)90223-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034812876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(75)90223-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034812876"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0039-6028(95)00868-3", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035966182"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.12615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060556792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.43.12615", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060556792"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.54.134", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060791208"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.59.2678", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060796024"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2002", 
    "datePublishedReg": "2002-01-01", 
    "description": "In a first set of experiments, observations of anisotropic wetting of different orientations of a macroscopic (milimeter-sized) solid single crystal of Pb by pure liquid Pb have been made at the melting point. It was found that the surface orientations which undergo premelting transitions below the bulk melting point are perfectly wetted by the liquid, whereas the {100} and {111} facets, which do not premelt, are only partially wetted. On those surfaces, wetting improves with decreasing atomic density of the surface. In a second set of observations on Pb-Ga alloys, wetting of a mezoscopic (micronsized) solid single crystal of Pb by liquid Ga was studied in a scanning Auger microprobe. At relatively low temperatures, below the premelting of the solid Pb surfaces, liquid Ga droplets are found to reside only at the {210} orientations of Pb surface. As the temperature is raised above that where most Pb surface orientations undergo premelting, the anisotropic distribution of Ga droplets disappears. In both cases, the anisotropy of wetting is driven by the anisotropy of surface energy of the solid. The degree of wetting is shown to be strongly correlated to the degree of premelting at the solid surface.", 
    "editor": [
      {
        "familyName": "Duxbury", 
        "givenName": "P. M.", 
        "type": "Person"
      }, 
      {
        "familyName": "Pence", 
        "givenName": "T. J.", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-306-47071-3_4", 
    "inLanguage": [
      "en"
    ], 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "0-306-45619-2"
      ], 
      "name": "Dynamics of Crystal Surfaces and Interfaces", 
      "type": "Book"
    }, 
    "name": "Anisotropy of Wetting of PB Crystals By Their Own Melt and By Liquid GA-PB Alloys", 
    "pagination": "53-58", 
    "productId": [
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-306-47071-3_4"
        ]
      }, 
      {
        "name": "readcube_id", 
        "type": "PropertyValue", 
        "value": [
          "9c746459ed05531b3ddda61c131a093dab8457886abfe4e13f19e14aeb615ae8"
        ]
      }, 
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1032841810"
        ]
      }
    ], 
    "publisher": {
      "location": "Boston", 
      "name": "Kluwer Academic Publishers", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-306-47071-3_4", 
      "https://app.dimensions.ai/details/publication/pub.1032841810"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2019-04-15T10:35", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-uberresearch-data-dimensions-target-20181106-alternative/cleanup/v134/2549eaecd7973599484d7c17b260dba0a4ecb94b/merge/v9/a6c9fde33151104705d4d7ff012ea9563521a3ce/jats-lookup/v90/0000000001_0000000264/records_8659_00000263.jsonl", 
    "type": "Chapter", 
    "url": "http://link.springer.com/10.1007/0-306-47071-3_4"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-306-47071-3_4'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-306-47071-3_4'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-306-47071-3_4'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-306-47071-3_4'


 

This table displays all metadata directly associated to this object as RDF triples.

108 TRIPLES      23 PREDICATES      37 URIs      20 LITERALS      8 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-306-47071-3_4 schema:about anzsrc-for:03
2 anzsrc-for:0306
3 schema:author Nd51d9ae7321a42b68ee1ca79eb1e69cc
4 schema:citation https://doi.org/10.1016/0039-6028(68)90132-5
5 https://doi.org/10.1016/0039-6028(75)90223-x
6 https://doi.org/10.1016/0039-6028(76)90236-3
7 https://doi.org/10.1016/0039-6028(89)90577-3
8 https://doi.org/10.1016/0039-6028(93)91471-z
9 https://doi.org/10.1016/0039-6028(95)00868-3
10 https://doi.org/10.1016/s0039-6028(83)80036-3
11 https://doi.org/10.1103/physrevb.43.12615
12 https://doi.org/10.1103/physrevlett.54.134
13 https://doi.org/10.1103/physrevlett.59.2678
14 schema:datePublished 2002
15 schema:datePublishedReg 2002-01-01
16 schema:description In a first set of experiments, observations of anisotropic wetting of different orientations of a macroscopic (milimeter-sized) solid single crystal of Pb by pure liquid Pb have been made at the melting point. It was found that the surface orientations which undergo premelting transitions below the bulk melting point are perfectly wetted by the liquid, whereas the {100} and {111} facets, which do not premelt, are only partially wetted. On those surfaces, wetting improves with decreasing atomic density of the surface. In a second set of observations on Pb-Ga alloys, wetting of a mezoscopic (micronsized) solid single crystal of Pb by liquid Ga was studied in a scanning Auger microprobe. At relatively low temperatures, below the premelting of the solid Pb surfaces, liquid Ga droplets are found to reside only at the {210} orientations of Pb surface. As the temperature is raised above that where most Pb surface orientations undergo premelting, the anisotropic distribution of Ga droplets disappears. In both cases, the anisotropy of wetting is driven by the anisotropy of surface energy of the solid. The degree of wetting is shown to be strongly correlated to the degree of premelting at the solid surface.
17 schema:editor N3d5c06afc5bf479f911bba5efa68f077
18 schema:genre chapter
19 schema:inLanguage en
20 schema:isAccessibleForFree false
21 schema:isPartOf Nd729302070f243cb9fa04beb6bec5c71
22 schema:name Anisotropy of Wetting of PB Crystals By Their Own Melt and By Liquid GA-PB Alloys
23 schema:pagination 53-58
24 schema:productId N599f62a91cd548a3b57299616a4e48ed
25 N90cbb55cf70949fc91c8b46dcf88f401
26 N9c6b312b0bf8467cb7ae77272824e18f
27 schema:publisher Nb35c2bd0eaf649e39e94a0d6779b3f2a
28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032841810
29 https://doi.org/10.1007/0-306-47071-3_4
30 schema:sdDatePublished 2019-04-15T10:35
31 schema:sdLicense https://scigraph.springernature.com/explorer/license/
32 schema:sdPublisher Nf614922e4e7e4e0aaa24ba4efb38101c
33 schema:url http://link.springer.com/10.1007/0-306-47071-3_4
34 sgo:license sg:explorer/license/
35 sgo:sdDataset chapters
36 rdf:type schema:Chapter
37 N0ff07463f9e54b46a90017b01e7b49a5 rdf:first sg:person.015403666233.15
38 rdf:rest rdf:nil
39 N16332a3c0f4e4bbcae71409ceeb68e8f rdf:first Nf9d1634e2c1d45c4aca061ee71dc494c
40 rdf:rest rdf:nil
41 N33178909ddd24f23bb9026dff56c13b0 schema:name Centre de Recherche sur les Mécanismes de la Croissance Cristalline, CNRS, Campus de Luminy, Case 913, 13288 Marseille Cedex 9, France
42 rdf:type schema:Organization
43 N3d5c06afc5bf479f911bba5efa68f077 rdf:first Nd7bfb655e23a4ab4bc6600dc4506c236
44 rdf:rest N16332a3c0f4e4bbcae71409ceeb68e8f
45 N599f62a91cd548a3b57299616a4e48ed schema:name dimensions_id
46 schema:value pub.1032841810
47 rdf:type schema:PropertyValue
48 N90cbb55cf70949fc91c8b46dcf88f401 schema:name doi
49 schema:value 10.1007/0-306-47071-3_4
50 rdf:type schema:PropertyValue
51 N9c6b312b0bf8467cb7ae77272824e18f schema:name readcube_id
52 schema:value 9c746459ed05531b3ddda61c131a093dab8457886abfe4e13f19e14aeb615ae8
53 rdf:type schema:PropertyValue
54 Nb35c2bd0eaf649e39e94a0d6779b3f2a schema:location Boston
55 schema:name Kluwer Academic Publishers
56 rdf:type schema:Organisation
57 Nd51d9ae7321a42b68ee1ca79eb1e69cc rdf:first sg:person.011023023233.37
58 rdf:rest N0ff07463f9e54b46a90017b01e7b49a5
59 Nd729302070f243cb9fa04beb6bec5c71 schema:isbn 0-306-45619-2
60 schema:name Dynamics of Crystal Surfaces and Interfaces
61 rdf:type schema:Book
62 Nd7bfb655e23a4ab4bc6600dc4506c236 schema:familyName Duxbury
63 schema:givenName P. M.
64 rdf:type schema:Person
65 Nf614922e4e7e4e0aaa24ba4efb38101c schema:name Springer Nature - SN SciGraph project
66 rdf:type schema:Organization
67 Nf9d1634e2c1d45c4aca061ee71dc494c schema:familyName Pence
68 schema:givenName T. J.
69 rdf:type schema:Person
70 anzsrc-for:03 schema:inDefinedTermSet anzsrc-for:
71 schema:name Chemical Sciences
72 rdf:type schema:DefinedTerm
73 anzsrc-for:0306 schema:inDefinedTermSet anzsrc-for:
74 schema:name Physical Chemistry (incl. Structural)
75 rdf:type schema:DefinedTerm
76 sg:person.011023023233.37 schema:affiliation N33178909ddd24f23bb9026dff56c13b0
77 schema:familyName Chatain
78 schema:givenName Dominique
79 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.011023023233.37
80 rdf:type schema:Person
81 sg:person.015403666233.15 schema:affiliation https://www.grid.ac/institutes/grid.147455.6
82 schema:familyName Wynblatt
83 schema:givenName Paul
84 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015403666233.15
85 rdf:type schema:Person
86 https://doi.org/10.1016/0039-6028(68)90132-5 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017833019
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1016/0039-6028(75)90223-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1034812876
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1016/0039-6028(76)90236-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006891167
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1016/0039-6028(89)90577-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1003201392
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1016/0039-6028(93)91471-z schema:sameAs https://app.dimensions.ai/details/publication/pub.1013296366
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1016/0039-6028(95)00868-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035966182
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1016/s0039-6028(83)80036-3 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008376153
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1103/physrevb.43.12615 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060556792
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1103/physrevlett.54.134 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060791208
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1103/physrevlett.59.2678 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060796024
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.147455.6 schema:alternateName Carnegie Mellon University
107 schema:name Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
108 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...