Metabolic Flux Distributions in Hybridoma Cells at Different Metabolic States View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-01-01

AUTHORS

Peng-Cheng Fu , Anna Europa , Anshu Gambhir , Wei-Shou Hu

ABSTRACT

The metabolic state, specifically the conversion ofnutrients to lactate and other metabolites, of hybridomacells can be manipulated in afed-batch culture by controlling the level of glucose. When cultivated in continuous cultures, these different metabolic states result in multiple steady states marked by different cell, residual nutrient and metabolite concentrations. Most notably, the ratio of lactate produced to glucose consumed was markedly different. To better understand the underlying mechanisms of these metabolic states, metabolic flux analysis was performed. The intracellular fluxes are greatly different in the glycolytic pathway and amino acid catabolism among these steady states. The fluxes in the high lactate producing state were much greater than in the “efficient” state. The comparative analysis of intracellular fluxes lends credence to the idea of metabolic overflow in the excessive production of the metabolic by products: lactate and ammonia More... »

PAGES

51-55

Book

TITLE

Animal Cell Technology: Challenges for the 21st Century

ISBN

978-0-7923-5805-3
978-0-306-46869-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-306-46869-7_10

DOI

http://dx.doi.org/10.1007/0-306-46869-7_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042171876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Peng-Cheng", 
        "id": "sg:person.01007111122.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007111122.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Europa", 
        "givenName": "Anna", 
        "id": "sg:person.01270527706.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270527706.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gambhir", 
        "givenName": "Anshu", 
        "id": "sg:person.01272676063.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272676063.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "id": "sg:person.01064261433.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-01-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "The metabolic state, specifically the conversion ofnutrients to lactate and other metabolites, of hybridomacells can be manipulated in afed-batch culture by controlling the level of glucose. When cultivated in continuous cultures, these different metabolic states result in multiple steady states marked by different cell, residual nutrient and metabolite concentrations. Most notably, the ratio of lactate produced to glucose consumed was markedly different. To better understand the underlying mechanisms of these metabolic states, metabolic flux analysis was performed. The intracellular fluxes are greatly different in the glycolytic pathway and amino acid catabolism among these steady states. The fluxes in the high lactate producing state were much greater than in the \u201cefficient\u201d state. The comparative analysis of intracellular fluxes lends credence to the idea of metabolic overflow in the excessive production of the metabolic by products: lactate and ammonia", 
    "editor": [
      {
        "familyName": "Ikura", 
        "givenName": "Kouji", 
        "type": "Person"
      }, 
      {
        "familyName": "Nagao", 
        "givenName": "Masaya", 
        "type": "Person"
      }, 
      {
        "familyName": "Masuda", 
        "givenName": "Seiji", 
        "type": "Person"
      }, 
      {
        "familyName": "Sasaki", 
        "givenName": "Ryuzo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-306-46869-7_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-7923-5805-3", 
        "978-0-306-46869-8"
      ], 
      "name": "Animal Cell Technology: Challenges for the 21st Century", 
      "type": "Book"
    }, 
    "keywords": [
      "metabolic state", 
      "different metabolic states", 
      "levels of glucose", 
      "ratio of lactate", 
      "high lactate", 
      "excessive production", 
      "amino acid catabolism", 
      "metabolite concentrations", 
      "lactate", 
      "hybridoma cells", 
      "glycolytic pathway", 
      "different cells", 
      "cells", 
      "Metabolic", 
      "glucose", 
      "catabolism", 
      "metabolites", 
      "culture", 
      "pathway", 
      "levels", 
      "steady state", 
      "analysis", 
      "concentration", 
      "mechanism", 
      "ratio", 
      "production", 
      "state", 
      "intracellular fluxes", 
      "credence", 
      "nutrients", 
      "comparative analysis", 
      "overflow", 
      "continuous culture", 
      "products", 
      "flux analysis", 
      "conversion", 
      "distribution", 
      "metabolic flux analysis", 
      "metabolic flux distribution", 
      "flux", 
      "idea", 
      "metabolic overflow", 
      "residual nutrients", 
      "multiple steady states", 
      "flux distribution"
    ], 
    "name": "Metabolic Flux Distributions in Hybridoma Cells at Different Metabolic States", 
    "pagination": "51-55", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042171876"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-306-46869-7_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-306-46869-7_10", 
      "https://app.dimensions.ai/details/publication/pub.1042171876"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-05-20T07:47", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220519/entities/gbq_results/chapter/chapter_370.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/0-306-46869-7_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-306-46869-7_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-306-46869-7_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-306-46869-7_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-306-46869-7_10'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      23 PREDICATES      70 URIs      63 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-306-46869-7_10 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author N5a8aedea75d84b11867c769c29614e55
4 schema:datePublished 2002-01-01
5 schema:datePublishedReg 2002-01-01
6 schema:description The metabolic state, specifically the conversion ofnutrients to lactate and other metabolites, of hybridomacells can be manipulated in afed-batch culture by controlling the level of glucose. When cultivated in continuous cultures, these different metabolic states result in multiple steady states marked by different cell, residual nutrient and metabolite concentrations. Most notably, the ratio of lactate produced to glucose consumed was markedly different. To better understand the underlying mechanisms of these metabolic states, metabolic flux analysis was performed. The intracellular fluxes are greatly different in the glycolytic pathway and amino acid catabolism among these steady states. The fluxes in the high lactate producing state were much greater than in the “efficient” state. The comparative analysis of intracellular fluxes lends credence to the idea of metabolic overflow in the excessive production of the metabolic by products: lactate and ammonia
7 schema:editor Nf32c103db89442318ca670e591cac346
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N0fd9241fd0f9470592dc75ffd98f92ea
12 schema:keywords Metabolic
13 amino acid catabolism
14 analysis
15 catabolism
16 cells
17 comparative analysis
18 concentration
19 continuous culture
20 conversion
21 credence
22 culture
23 different cells
24 different metabolic states
25 distribution
26 excessive production
27 flux
28 flux analysis
29 flux distribution
30 glucose
31 glycolytic pathway
32 high lactate
33 hybridoma cells
34 idea
35 intracellular fluxes
36 lactate
37 levels
38 levels of glucose
39 mechanism
40 metabolic flux analysis
41 metabolic flux distribution
42 metabolic overflow
43 metabolic state
44 metabolite concentrations
45 metabolites
46 multiple steady states
47 nutrients
48 overflow
49 pathway
50 production
51 products
52 ratio
53 ratio of lactate
54 residual nutrients
55 state
56 steady state
57 schema:name Metabolic Flux Distributions in Hybridoma Cells at Different Metabolic States
58 schema:pagination 51-55
59 schema:productId N050a571390064b3696d676d59f012ad2
60 N0c32265df8fa4d048e83b89b5074caed
61 schema:publisher N741fc5ab3e404f9fae04984bf77cfd31
62 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042171876
63 https://doi.org/10.1007/0-306-46869-7_10
64 schema:sdDatePublished 2022-05-20T07:47
65 schema:sdLicense https://scigraph.springernature.com/explorer/license/
66 schema:sdPublisher N1dcd928429974f64a14e4bf48eb49767
67 schema:url https://doi.org/10.1007/0-306-46869-7_10
68 sgo:license sg:explorer/license/
69 sgo:sdDataset chapters
70 rdf:type schema:Chapter
71 N050a571390064b3696d676d59f012ad2 schema:name dimensions_id
72 schema:value pub.1042171876
73 rdf:type schema:PropertyValue
74 N0c32265df8fa4d048e83b89b5074caed schema:name doi
75 schema:value 10.1007/0-306-46869-7_10
76 rdf:type schema:PropertyValue
77 N0e03093f338c426ea9ae4fe1fb8db790 rdf:first Nc2d7803bb0b145cca90881bd6af3a947
78 rdf:rest Nb0b4a8ab9e1c4e71bf8f8c55602ac239
79 N0fd9241fd0f9470592dc75ffd98f92ea schema:isbn 978-0-306-46869-8
80 978-0-7923-5805-3
81 schema:name Animal Cell Technology: Challenges for the 21st Century
82 rdf:type schema:Book
83 N1dcd928429974f64a14e4bf48eb49767 schema:name Springer Nature - SN SciGraph project
84 rdf:type schema:Organization
85 N5a8aedea75d84b11867c769c29614e55 rdf:first sg:person.01007111122.98
86 rdf:rest N9297b852bf8c4c8a8575089eb97dcf64
87 N65157517144c424788106d26d35e0ed5 rdf:first Nc166d7fa542645059a8252a3ad0b4d3b
88 rdf:rest rdf:nil
89 N6a772878aebd44829a6c57b77e216001 rdf:first sg:person.01272676063.04
90 rdf:rest Ne57be19404dd46d09d5f4c8ce40d07d5
91 N741fc5ab3e404f9fae04984bf77cfd31 schema:name Springer Nature
92 rdf:type schema:Organisation
93 N9225f58bbc7d4bceb7b3daebceec15ee schema:familyName Ikura
94 schema:givenName Kouji
95 rdf:type schema:Person
96 N9297b852bf8c4c8a8575089eb97dcf64 rdf:first sg:person.01270527706.83
97 rdf:rest N6a772878aebd44829a6c57b77e216001
98 Nb0b4a8ab9e1c4e71bf8f8c55602ac239 rdf:first Nc55811a01b6049fc8baa0f367ec59d7b
99 rdf:rest N65157517144c424788106d26d35e0ed5
100 Nc166d7fa542645059a8252a3ad0b4d3b schema:familyName Sasaki
101 schema:givenName Ryuzo
102 rdf:type schema:Person
103 Nc2d7803bb0b145cca90881bd6af3a947 schema:familyName Nagao
104 schema:givenName Masaya
105 rdf:type schema:Person
106 Nc55811a01b6049fc8baa0f367ec59d7b schema:familyName Masuda
107 schema:givenName Seiji
108 rdf:type schema:Person
109 Ne57be19404dd46d09d5f4c8ce40d07d5 rdf:first sg:person.01064261433.49
110 rdf:rest rdf:nil
111 Nf32c103db89442318ca670e591cac346 rdf:first N9225f58bbc7d4bceb7b3daebceec15ee
112 rdf:rest N0e03093f338c426ea9ae4fe1fb8db790
113 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
114 schema:name Biological Sciences
115 rdf:type schema:DefinedTerm
116 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
117 schema:name Biochemistry and Cell Biology
118 rdf:type schema:DefinedTerm
119 sg:person.01007111122.98 schema:affiliation grid-institutes:grid.17635.36
120 schema:familyName Fu
121 schema:givenName Peng-Cheng
122 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007111122.98
123 rdf:type schema:Person
124 sg:person.01064261433.49 schema:affiliation grid-institutes:grid.17635.36
125 schema:familyName Hu
126 schema:givenName Wei-Shou
127 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49
128 rdf:type schema:Person
129 sg:person.01270527706.83 schema:affiliation grid-institutes:grid.17635.36
130 schema:familyName Europa
131 schema:givenName Anna
132 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270527706.83
133 rdf:type schema:Person
134 sg:person.01272676063.04 schema:affiliation grid-institutes:grid.17635.36
135 schema:familyName Gambhir
136 schema:givenName Anshu
137 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272676063.04
138 rdf:type schema:Person
139 grid-institutes:grid.17635.36 schema:alternateName Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA
140 schema:name Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA
141 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...