Metabolic Flux Distributions in Hybridoma Cells at Different Metabolic States View Full Text


Ontology type: schema:Chapter     


Chapter Info

DATE

2002-01-01

AUTHORS

Peng-Cheng Fu , Anna Europa , Anshu Gambhir , Wei-Shou Hu

ABSTRACT

The metabolic state, specifically the conversion ofnutrients to lactate and other metabolites, of hybridomacells can be manipulated in afed-batch culture by controlling the level of glucose. When cultivated in continuous cultures, these different metabolic states result in multiple steady states marked by different cell, residual nutrient and metabolite concentrations. Most notably, the ratio of lactate produced to glucose consumed was markedly different. To better understand the underlying mechanisms of these metabolic states, metabolic flux analysis was performed. The intracellular fluxes are greatly different in the glycolytic pathway and amino acid catabolism among these steady states. The fluxes in the high lactate producing state were much greater than in the “efficient” state. The comparative analysis of intracellular fluxes lends credence to the idea of metabolic overflow in the excessive production of the metabolic by products: lactate and ammonia More... »

PAGES

51-55

Book

TITLE

Animal Cell Technology: Challenges for the 21st Century

ISBN

978-0-7923-5805-3
978-0-306-46869-8

Identifiers

URI

http://scigraph.springernature.com/pub.10.1007/0-306-46869-7_10

DOI

http://dx.doi.org/10.1007/0-306-46869-7_10

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1042171876


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0601", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biochemistry and Cell Biology", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Fu", 
        "givenName": "Peng-Cheng", 
        "id": "sg:person.01007111122.98", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007111122.98"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Europa", 
        "givenName": "Anna", 
        "id": "sg:person.01270527706.83", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270527706.83"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Gambhir", 
        "givenName": "Anshu", 
        "id": "sg:person.01272676063.04", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272676063.04"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA", 
          "id": "http://www.grid.ac/institutes/grid.17635.36", 
          "name": [
            "Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Hu", 
        "givenName": "Wei-Shou", 
        "id": "sg:person.01064261433.49", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49"
        ], 
        "type": "Person"
      }
    ], 
    "datePublished": "2002-01-01", 
    "datePublishedReg": "2002-01-01", 
    "description": "The metabolic state, specifically the conversion ofnutrients to lactate and other metabolites, of hybridomacells can be manipulated in afed-batch culture by controlling the level of glucose. When cultivated in continuous cultures, these different metabolic states result in multiple steady states marked by different cell, residual nutrient and metabolite concentrations. Most notably, the ratio of lactate produced to glucose consumed was markedly different. To better understand the underlying mechanisms of these metabolic states, metabolic flux analysis was performed. The intracellular fluxes are greatly different in the glycolytic pathway and amino acid catabolism among these steady states. The fluxes in the high lactate producing state were much greater than in the \u201cefficient\u201d state. The comparative analysis of intracellular fluxes lends credence to the idea of metabolic overflow in the excessive production of the metabolic by products: lactate and ammonia", 
    "editor": [
      {
        "familyName": "Ikura", 
        "givenName": "Kouji", 
        "type": "Person"
      }, 
      {
        "familyName": "Nagao", 
        "givenName": "Masaya", 
        "type": "Person"
      }, 
      {
        "familyName": "Masuda", 
        "givenName": "Seiji", 
        "type": "Person"
      }, 
      {
        "familyName": "Sasaki", 
        "givenName": "Ryuzo", 
        "type": "Person"
      }
    ], 
    "genre": "chapter", 
    "id": "sg:pub.10.1007/0-306-46869-7_10", 
    "inLanguage": "en", 
    "isAccessibleForFree": false, 
    "isPartOf": {
      "isbn": [
        "978-0-7923-5805-3", 
        "978-0-306-46869-8"
      ], 
      "name": "Animal Cell Technology: Challenges for the 21st Century", 
      "type": "Book"
    }, 
    "keywords": [
      "metabolic state", 
      "levels of glucose", 
      "ratio of lactate", 
      "different metabolic states", 
      "high lactate", 
      "excessive production", 
      "amino acid catabolism", 
      "metabolite concentrations", 
      "lactate", 
      "acid catabolism", 
      "hybridoma cells", 
      "glycolytic pathway", 
      "different cells", 
      "cells", 
      "Metabolic", 
      "glucose", 
      "catabolism", 
      "culture", 
      "metabolites", 
      "pathway", 
      "levels", 
      "steady state", 
      "analysis", 
      "concentration", 
      "mechanism", 
      "ratio", 
      "production", 
      "credence", 
      "state", 
      "overflow", 
      "continuous culture", 
      "intracellular fluxes", 
      "comparative analysis", 
      "nutrients", 
      "conversion", 
      "products", 
      "distribution", 
      "flux analysis", 
      "metabolic flux analysis", 
      "flux", 
      "idea", 
      "metabolic overflow", 
      "metabolic flux distribution", 
      "residual nutrients", 
      "multiple steady states", 
      "flux distribution", 
      "hybridomacells", 
      "afed-batch culture", 
      "ammonia Metabolic Flux Distributions"
    ], 
    "name": "Metabolic Flux Distributions in Hybridoma Cells at Different Metabolic States", 
    "pagination": "51-55", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1042171876"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1007/0-306-46869-7_10"
        ]
      }
    ], 
    "publisher": {
      "name": "Springer Nature", 
      "type": "Organisation"
    }, 
    "sameAs": [
      "https://doi.org/10.1007/0-306-46869-7_10", 
      "https://app.dimensions.ai/details/publication/pub.1042171876"
    ], 
    "sdDataset": "chapters", 
    "sdDatePublished": "2022-01-01T19:20", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/chapter/chapter_349.jsonl", 
    "type": "Chapter", 
    "url": "https://doi.org/10.1007/0-306-46869-7_10"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1007/0-306-46869-7_10'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1007/0-306-46869-7_10'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1007/0-306-46869-7_10'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1007/0-306-46869-7_10'


 

This table displays all metadata directly associated to this object as RDF triples.

145 TRIPLES      23 PREDICATES      74 URIs      67 LITERALS      7 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1007/0-306-46869-7_10 schema:about anzsrc-for:06
2 anzsrc-for:0601
3 schema:author Na531c13eb6b04a869fb17d30eb8f97a3
4 schema:datePublished 2002-01-01
5 schema:datePublishedReg 2002-01-01
6 schema:description The metabolic state, specifically the conversion ofnutrients to lactate and other metabolites, of hybridomacells can be manipulated in afed-batch culture by controlling the level of glucose. When cultivated in continuous cultures, these different metabolic states result in multiple steady states marked by different cell, residual nutrient and metabolite concentrations. Most notably, the ratio of lactate produced to glucose consumed was markedly different. To better understand the underlying mechanisms of these metabolic states, metabolic flux analysis was performed. The intracellular fluxes are greatly different in the glycolytic pathway and amino acid catabolism among these steady states. The fluxes in the high lactate producing state were much greater than in the “efficient” state. The comparative analysis of intracellular fluxes lends credence to the idea of metabolic overflow in the excessive production of the metabolic by products: lactate and ammonia
7 schema:editor N1ffcfd52eee14c75b7ce38beeee9e82c
8 schema:genre chapter
9 schema:inLanguage en
10 schema:isAccessibleForFree false
11 schema:isPartOf N98d58a79a0024c858c0edc5dbc2c23d7
12 schema:keywords Metabolic
13 acid catabolism
14 afed-batch culture
15 amino acid catabolism
16 ammonia Metabolic Flux Distributions
17 analysis
18 catabolism
19 cells
20 comparative analysis
21 concentration
22 continuous culture
23 conversion
24 credence
25 culture
26 different cells
27 different metabolic states
28 distribution
29 excessive production
30 flux
31 flux analysis
32 flux distribution
33 glucose
34 glycolytic pathway
35 high lactate
36 hybridoma cells
37 hybridomacells
38 idea
39 intracellular fluxes
40 lactate
41 levels
42 levels of glucose
43 mechanism
44 metabolic flux analysis
45 metabolic flux distribution
46 metabolic overflow
47 metabolic state
48 metabolite concentrations
49 metabolites
50 multiple steady states
51 nutrients
52 overflow
53 pathway
54 production
55 products
56 ratio
57 ratio of lactate
58 residual nutrients
59 state
60 steady state
61 schema:name Metabolic Flux Distributions in Hybridoma Cells at Different Metabolic States
62 schema:pagination 51-55
63 schema:productId N17a9f6eb7322400f8ee0b0e43aad7af0
64 N726dcbabcfa04dfe91e81ee8116cb1f1
65 schema:publisher N1fd947c5e05a4138ac81f8748f67a666
66 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042171876
67 https://doi.org/10.1007/0-306-46869-7_10
68 schema:sdDatePublished 2022-01-01T19:20
69 schema:sdLicense https://scigraph.springernature.com/explorer/license/
70 schema:sdPublisher N8c2df9c0f3354d6ba6dde67f8764ef42
71 schema:url https://doi.org/10.1007/0-306-46869-7_10
72 sgo:license sg:explorer/license/
73 sgo:sdDataset chapters
74 rdf:type schema:Chapter
75 N0573480f8cfb454ba1cd243be25f6468 schema:familyName Sasaki
76 schema:givenName Ryuzo
77 rdf:type schema:Person
78 N0fe339f71f904b57890b5355df90bcdb schema:familyName Masuda
79 schema:givenName Seiji
80 rdf:type schema:Person
81 N122a6a6cc5174d5ab5575419a849a141 rdf:first N0573480f8cfb454ba1cd243be25f6468
82 rdf:rest rdf:nil
83 N17a9f6eb7322400f8ee0b0e43aad7af0 schema:name dimensions_id
84 schema:value pub.1042171876
85 rdf:type schema:PropertyValue
86 N1fd947c5e05a4138ac81f8748f67a666 schema:name Springer Nature
87 rdf:type schema:Organisation
88 N1ffcfd52eee14c75b7ce38beeee9e82c rdf:first N23afe21bc9a84fe3bdac8a071cc29995
89 rdf:rest N24c4f388b7194ca5ad2c8b31d622b4ef
90 N23afe21bc9a84fe3bdac8a071cc29995 schema:familyName Ikura
91 schema:givenName Kouji
92 rdf:type schema:Person
93 N24c4f388b7194ca5ad2c8b31d622b4ef rdf:first N9c1c783b8e60406cb4be478f9e5ce509
94 rdf:rest Nd613e7f8831848269cc636ce41852c7a
95 N2a519197e8bc47b48e8306a67d496396 rdf:first sg:person.01064261433.49
96 rdf:rest rdf:nil
97 N726dcbabcfa04dfe91e81ee8116cb1f1 schema:name doi
98 schema:value 10.1007/0-306-46869-7_10
99 rdf:type schema:PropertyValue
100 N72f0dadc00c24befb22871ec93aac604 rdf:first sg:person.01270527706.83
101 rdf:rest N95ca1b8d86494e6cadf72863579cfe1d
102 N8c2df9c0f3354d6ba6dde67f8764ef42 schema:name Springer Nature - SN SciGraph project
103 rdf:type schema:Organization
104 N95ca1b8d86494e6cadf72863579cfe1d rdf:first sg:person.01272676063.04
105 rdf:rest N2a519197e8bc47b48e8306a67d496396
106 N98d58a79a0024c858c0edc5dbc2c23d7 schema:isbn 978-0-306-46869-8
107 978-0-7923-5805-3
108 schema:name Animal Cell Technology: Challenges for the 21st Century
109 rdf:type schema:Book
110 N9c1c783b8e60406cb4be478f9e5ce509 schema:familyName Nagao
111 schema:givenName Masaya
112 rdf:type schema:Person
113 Na531c13eb6b04a869fb17d30eb8f97a3 rdf:first sg:person.01007111122.98
114 rdf:rest N72f0dadc00c24befb22871ec93aac604
115 Nd613e7f8831848269cc636ce41852c7a rdf:first N0fe339f71f904b57890b5355df90bcdb
116 rdf:rest N122a6a6cc5174d5ab5575419a849a141
117 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
118 schema:name Biological Sciences
119 rdf:type schema:DefinedTerm
120 anzsrc-for:0601 schema:inDefinedTermSet anzsrc-for:
121 schema:name Biochemistry and Cell Biology
122 rdf:type schema:DefinedTerm
123 sg:person.01007111122.98 schema:affiliation grid-institutes:grid.17635.36
124 schema:familyName Fu
125 schema:givenName Peng-Cheng
126 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01007111122.98
127 rdf:type schema:Person
128 sg:person.01064261433.49 schema:affiliation grid-institutes:grid.17635.36
129 schema:familyName Hu
130 schema:givenName Wei-Shou
131 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01064261433.49
132 rdf:type schema:Person
133 sg:person.01270527706.83 schema:affiliation grid-institutes:grid.17635.36
134 schema:familyName Europa
135 schema:givenName Anna
136 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01270527706.83
137 rdf:type schema:Person
138 sg:person.01272676063.04 schema:affiliation grid-institutes:grid.17635.36
139 schema:familyName Gambhir
140 schema:givenName Anshu
141 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01272676063.04
142 rdf:type schema:Person
143 grid-institutes:grid.17635.36 schema:alternateName Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA
144 schema:name Department of Chemical Engineering & Materials Science, University of Minnesota, 55455, Minneapolis, MN, USA
145 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...