Pulse vaccination strategy in the SIR epidemic model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-11

AUTHORS

Boris Shulgin, Lewi Stone, Zvia Agur

ABSTRACT

Theoretical results show that the measles ‘pulse’ vaccination strategy can be distinguished from the conventional strategies in leading to disease eradication at relatively low values of vaccination. Using the SIR epidemic model we showed that under a planned pulse vaccination regime the system converges to a stable solution with the number of infectious individuals equal to zero. We showed that pulse vaccination leads to epidemics eradication if certain conditions regarding the magnitude of vaccination proportion and on the period of the pulses are adhered to. Our theoretical results are confirmed by numerical simulations. The introduction of seasonal variation into the basic SIR model leads to periodic and chaotic dynamics of epidemics. We showed that under seasonal variation, in spite of the complex dynamics of the system, pulse vaccination still leads to epidemic eradication. We derived the conditions for epidemic eradication under various constraints and showed their dependence on the parameters of the epidemic. We compared effectiveness and cost of constant, pulse and mixed vaccination policies. More... »

PAGES

1123-1148

Identifiers

URI

http://scigraph.springernature.com/pub.10.1006/s0092-8240(98)90005-2

DOI

http://dx.doi.org/10.1006/s0092-8240(98)90005-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1054615077

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9866452


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost-Benefit Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Measles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Measles Vaccine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seasons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vaccination", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel", 
          "id": "http://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Physics, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia", 
            "The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia", 
            "Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shulgin", 
        "givenName": "Boris", 
        "id": "sg:person.012716666071.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012716666071.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stone", 
        "givenName": "Lewi", 
        "id": "sg:person.01257423733.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257423733.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel", 
          "id": "http://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agur", 
        "givenName": "Zvia", 
        "id": "sg:person.01014716607.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014716607.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00221337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033592485", 
          "https://doi.org/10.1007/bf00221337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/344734a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018498622", 
          "https://doi.org/10.1038/344734a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037932814", 
          "https://doi.org/10.1007/bf00276232"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-11", 
    "datePublishedReg": "1998-11-01", 
    "description": "Theoretical results show that the measles \u2018pulse\u2019 vaccination strategy can be distinguished from the conventional strategies in leading to disease eradication at relatively low values of vaccination. Using the SIR epidemic model we showed that under a planned pulse vaccination regime the system converges to a stable solution with the number of infectious individuals equal to zero. We showed that pulse vaccination leads to epidemics eradication if certain conditions regarding the magnitude of vaccination proportion and on the period of the pulses are adhered to. Our theoretical results are confirmed by numerical simulations. The introduction of seasonal variation into the basic SIR model leads to periodic and chaotic dynamics of epidemics. We showed that under seasonal variation, in spite of the complex dynamics of the system, pulse vaccination still leads to epidemic eradication. We derived the conditions for epidemic eradication under various constraints and showed their dependence on the parameters of the epidemic. We compared effectiveness and cost of constant, pulse and mixed vaccination policies.", 
    "genre": "article", 
    "id": "sg:pub.10.1006/s0092-8240(98)90005-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "SIR epidemic model", 
      "epidemic eradication", 
      "epidemic model", 
      "theoretical results", 
      "pulse vaccination", 
      "basic SIR model", 
      "pulse vaccination strategy", 
      "chaotic dynamics", 
      "stable solutions", 
      "SIR model", 
      "complex dynamics", 
      "infectious individuals", 
      "vaccination strategies", 
      "numerical simulations", 
      "vaccination proportion", 
      "certain conditions", 
      "dynamics", 
      "vaccination regime", 
      "vaccination policy", 
      "vaccination", 
      "model", 
      "disease eradication", 
      "pulses", 
      "eradication", 
      "constraints", 
      "simulations", 
      "epidemic", 
      "solution", 
      "system", 
      "parameters", 
      "dependence", 
      "regime", 
      "measles", 
      "conditions", 
      "results", 
      "effectiveness", 
      "variation", 
      "number", 
      "magnitude", 
      "conventional strategies", 
      "proportion", 
      "individuals", 
      "strategies", 
      "lower values", 
      "period", 
      "cost", 
      "values", 
      "introduction", 
      "spite", 
      "seasonal variation", 
      "policy"
    ], 
    "name": "Pulse vaccination strategy in the SIR epidemic model", 
    "pagination": "1123-1148", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1054615077"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1006/s0092-8240(98)90005-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9866452"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1006/s0092-8240(98)90005-2", 
      "https://app.dimensions.ai/details/publication/pub.1054615077"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_286.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1006/s0092-8240(98)90005-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1006/s0092-8240(98)90005-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1006/s0092-8240(98)90005-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1006/s0092-8240(98)90005-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1006/s0092-8240(98)90005-2'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      88 URIs      77 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1006/s0092-8240(98)90005-2 schema:about N254b6eefc6ec445ca06c9c84faf0f848
2 N275512a6b3124b62abc57432a18d2a2a
3 N5ba52861debc4c87b7a9ee161510216e
4 N85b313482a924b75a5ddef84bb68c817
5 N883d4e8104e7410283eb1f4b563239b2
6 N95bbcba4f7d34f7f8f011dbe127fe80f
7 N9e9295adeb784ef2a062f1e7881b8776
8 Nd40b4ac62c84402b94b49d516f229db7
9 anzsrc-for:01
10 anzsrc-for:06
11 schema:author Na2339779e63f49a295b92a8c4c49cd14
12 schema:citation sg:pub.10.1007/bf00221337
13 sg:pub.10.1007/bf00276232
14 sg:pub.10.1038/344734a0
15 schema:datePublished 1998-11
16 schema:datePublishedReg 1998-11-01
17 schema:description Theoretical results show that the measles ‘pulse’ vaccination strategy can be distinguished from the conventional strategies in leading to disease eradication at relatively low values of vaccination. Using the SIR epidemic model we showed that under a planned pulse vaccination regime the system converges to a stable solution with the number of infectious individuals equal to zero. We showed that pulse vaccination leads to epidemics eradication if certain conditions regarding the magnitude of vaccination proportion and on the period of the pulses are adhered to. Our theoretical results are confirmed by numerical simulations. The introduction of seasonal variation into the basic SIR model leads to periodic and chaotic dynamics of epidemics. We showed that under seasonal variation, in spite of the complex dynamics of the system, pulse vaccination still leads to epidemic eradication. We derived the conditions for epidemic eradication under various constraints and showed their dependence on the parameters of the epidemic. We compared effectiveness and cost of constant, pulse and mixed vaccination policies.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N3fb7813a7cac4e7fb6ebb6faaee26089
21 N56998968959043aab3ca133bb169c104
22 sg:journal.1018370
23 schema:keywords SIR epidemic model
24 SIR model
25 basic SIR model
26 certain conditions
27 chaotic dynamics
28 complex dynamics
29 conditions
30 constraints
31 conventional strategies
32 cost
33 dependence
34 disease eradication
35 dynamics
36 effectiveness
37 epidemic
38 epidemic eradication
39 epidemic model
40 eradication
41 individuals
42 infectious individuals
43 introduction
44 lower values
45 magnitude
46 measles
47 model
48 number
49 numerical simulations
50 parameters
51 period
52 policy
53 proportion
54 pulse vaccination
55 pulse vaccination strategy
56 pulses
57 regime
58 results
59 seasonal variation
60 simulations
61 solution
62 spite
63 stable solutions
64 strategies
65 system
66 theoretical results
67 vaccination
68 vaccination policy
69 vaccination proportion
70 vaccination regime
71 vaccination strategies
72 values
73 variation
74 schema:name Pulse vaccination strategy in the SIR epidemic model
75 schema:pagination 1123-1148
76 schema:productId N1150bc4aef0c4592a39c6fe9e40f6cf9
77 Nb20901025ff640f3a0fa82d3e240093d
78 Ne251b97004bd4ceda3451191f43213db
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054615077
80 https://doi.org/10.1006/s0092-8240(98)90005-2
81 schema:sdDatePublished 2022-10-01T06:30
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Nea8b7ab899b947f7afdc632597fc299c
84 schema:url https://doi.org/10.1006/s0092-8240(98)90005-2
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N1150bc4aef0c4592a39c6fe9e40f6cf9 schema:name dimensions_id
89 schema:value pub.1054615077
90 rdf:type schema:PropertyValue
91 N254b6eefc6ec445ca06c9c84faf0f848 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Humans
93 rdf:type schema:DefinedTerm
94 N275512a6b3124b62abc57432a18d2a2a schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Cost-Benefit Analysis
96 rdf:type schema:DefinedTerm
97 N3fb7813a7cac4e7fb6ebb6faaee26089 schema:issueNumber 6
98 rdf:type schema:PublicationIssue
99 N56998968959043aab3ca133bb169c104 schema:volumeNumber 60
100 rdf:type schema:PublicationVolume
101 N5ba52861debc4c87b7a9ee161510216e schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
102 schema:name Computer Simulation
103 rdf:type schema:DefinedTerm
104 N6aa19cb7152746299916cf62ab7c366c rdf:first sg:person.01014716607.27
105 rdf:rest rdf:nil
106 N85b313482a924b75a5ddef84bb68c817 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
107 schema:name Measles Vaccine
108 rdf:type schema:DefinedTerm
109 N883d4e8104e7410283eb1f4b563239b2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
110 schema:name Models, Biological
111 rdf:type schema:DefinedTerm
112 N95bbcba4f7d34f7f8f011dbe127fe80f schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
113 schema:name Measles
114 rdf:type schema:DefinedTerm
115 N9e9295adeb784ef2a062f1e7881b8776 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Seasons
117 rdf:type schema:DefinedTerm
118 Na2339779e63f49a295b92a8c4c49cd14 rdf:first sg:person.012716666071.45
119 rdf:rest Na4c0a312830c4810bd17b72bf2405585
120 Na4c0a312830c4810bd17b72bf2405585 rdf:first sg:person.01257423733.55
121 rdf:rest N6aa19cb7152746299916cf62ab7c366c
122 Nb20901025ff640f3a0fa82d3e240093d schema:name doi
123 schema:value 10.1006/s0092-8240(98)90005-2
124 rdf:type schema:PropertyValue
125 Nd40b4ac62c84402b94b49d516f229db7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
126 schema:name Vaccination
127 rdf:type schema:DefinedTerm
128 Ne251b97004bd4ceda3451191f43213db schema:name pubmed_id
129 schema:value 9866452
130 rdf:type schema:PropertyValue
131 Nea8b7ab899b947f7afdc632597fc299c schema:name Springer Nature - SN SciGraph project
132 rdf:type schema:Organization
133 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
134 schema:name Mathematical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
137 schema:name Biological Sciences
138 rdf:type schema:DefinedTerm
139 sg:journal.1018370 schema:issn 0092-8240
140 1522-9602
141 schema:name Bulletin of Mathematical Biology
142 schema:publisher Springer Nature
143 rdf:type schema:Periodical
144 sg:person.01014716607.27 schema:affiliation grid-institutes:grid.12136.37
145 schema:familyName Agur
146 schema:givenName Zvia
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014716607.27
148 rdf:type schema:Person
149 sg:person.01257423733.55 schema:affiliation grid-institutes:grid.446088.6
150 schema:familyName Stone
151 schema:givenName Lewi
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257423733.55
153 rdf:type schema:Person
154 sg:person.012716666071.45 schema:affiliation grid-institutes:grid.12136.37
155 schema:familyName Shulgin
156 schema:givenName Boris
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012716666071.45
158 rdf:type schema:Person
159 sg:pub.10.1007/bf00221337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033592485
160 https://doi.org/10.1007/bf00221337
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/bf00276232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037932814
163 https://doi.org/10.1007/bf00276232
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/344734a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018498622
166 https://doi.org/10.1038/344734a0
167 rdf:type schema:CreativeWork
168 grid-institutes:grid.12136.37 schema:alternateName Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel
169 schema:name Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel
170 Department of Physics, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia
171 The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia
172 rdf:type schema:Organization
173 grid-institutes:grid.446088.6 schema:alternateName The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia
174 schema:name The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...