Pulse vaccination strategy in the SIR epidemic model View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

1998-11

AUTHORS

Boris Shulgin, Lewi Stone, Zvia Agur

ABSTRACT

Theoretical results show that the measles ‘pulse’ vaccination strategy can be distinguished from the conventional strategies in leading to disease eradication at relatively low values of vaccination. Using the SIR epidemic model we showed that under a planned pulse vaccination regime the system converges to a stable solution with the number of infectious individuals equal to zero. We showed that pulse vaccination leads to epidemics eradication if certain conditions regarding the magnitude of vaccination proportion and on the period of the pulses are adhered to. Our theoretical results are confirmed by numerical simulations. The introduction of seasonal variation into the basic SIR model leads to periodic and chaotic dynamics of epidemics. We showed that under seasonal variation, in spite of the complex dynamics of the system, pulse vaccination still leads to epidemic eradication. We derived the conditions for epidemic eradication under various constraints and showed their dependence on the parameters of the epidemic. We compared effectiveness and cost of constant, pulse and mixed vaccination policies. More... »

PAGES

1123-1148

Identifiers

URI

http://scigraph.springernature.com/pub.10.1006/s0092-8240(98)90005-2

DOI

http://dx.doi.org/10.1006/s0092-8240(98)90005-2

DIMENSIONS

https://app.dimensions.ai/details/publication/pub.1054615077

PUBMED

https://www.ncbi.nlm.nih.gov/pubmed/9866452


Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
Incoming Citations Browse incoming citations for this publication using opencitations.net

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/01", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Mathematical Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "name": "Biological Sciences", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Computer Simulation", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Cost-Benefit Analysis", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Humans", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Measles", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Measles Vaccine", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Models, Biological", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Seasons", 
        "type": "DefinedTerm"
      }, 
      {
        "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
        "name": "Vaccination", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "affiliation": {
          "alternateName": "Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel", 
          "id": "http://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Physics, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia", 
            "The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia", 
            "Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Shulgin", 
        "givenName": "Boris", 
        "id": "sg:person.012716666071.45", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012716666071.45"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia", 
          "id": "http://www.grid.ac/institutes/grid.446088.6", 
          "name": [
            "The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Stone", 
        "givenName": "Lewi", 
        "id": "sg:person.01257423733.55", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257423733.55"
        ], 
        "type": "Person"
      }, 
      {
        "affiliation": {
          "alternateName": "Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel", 
          "id": "http://www.grid.ac/institutes/grid.12136.37", 
          "name": [
            "Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel"
          ], 
          "type": "Organization"
        }, 
        "familyName": "Agur", 
        "givenName": "Zvia", 
        "id": "sg:person.01014716607.27", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014716607.27"
        ], 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/bf00221337", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033592485", 
          "https://doi.org/10.1007/bf00221337"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/344734a0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018498622", 
          "https://doi.org/10.1038/344734a0"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/bf00276232", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037932814", 
          "https://doi.org/10.1007/bf00276232"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "1998-11", 
    "datePublishedReg": "1998-11-01", 
    "description": "Theoretical results show that the measles \u2018pulse\u2019 vaccination strategy can be distinguished from the conventional strategies in leading to disease eradication at relatively low values of vaccination. Using the SIR epidemic model we showed that under a planned pulse vaccination regime the system converges to a stable solution with the number of infectious individuals equal to zero. We showed that pulse vaccination leads to epidemics eradication if certain conditions regarding the magnitude of vaccination proportion and on the period of the pulses are adhered to. Our theoretical results are confirmed by numerical simulations. The introduction of seasonal variation into the basic SIR model leads to periodic and chaotic dynamics of epidemics. We showed that under seasonal variation, in spite of the complex dynamics of the system, pulse vaccination still leads to epidemic eradication. We derived the conditions for epidemic eradication under various constraints and showed their dependence on the parameters of the epidemic. We compared effectiveness and cost of constant, pulse and mixed vaccination policies.", 
    "genre": "article", 
    "id": "sg:pub.10.1006/s0092-8240(98)90005-2", 
    "isAccessibleForFree": false, 
    "isPartOf": [
      {
        "id": "sg:journal.1018370", 
        "issn": [
          "0092-8240", 
          "1522-9602"
        ], 
        "name": "Bulletin of Mathematical Biology", 
        "publisher": "Springer Nature", 
        "type": "Periodical"
      }, 
      {
        "issueNumber": "6", 
        "type": "PublicationIssue"
      }, 
      {
        "type": "PublicationVolume", 
        "volumeNumber": "60"
      }
    ], 
    "keywords": [
      "SIR epidemic model", 
      "epidemic eradication", 
      "epidemic model", 
      "theoretical results", 
      "pulse vaccination", 
      "basic SIR model", 
      "pulse vaccination strategy", 
      "chaotic dynamics", 
      "stable solutions", 
      "SIR model", 
      "complex dynamics", 
      "infectious individuals", 
      "vaccination strategies", 
      "numerical simulations", 
      "vaccination proportion", 
      "certain conditions", 
      "dynamics", 
      "vaccination regime", 
      "vaccination policy", 
      "vaccination", 
      "model", 
      "disease eradication", 
      "pulses", 
      "eradication", 
      "constraints", 
      "simulations", 
      "epidemic", 
      "solution", 
      "system", 
      "parameters", 
      "dependence", 
      "regime", 
      "measles", 
      "conditions", 
      "results", 
      "effectiveness", 
      "variation", 
      "number", 
      "magnitude", 
      "conventional strategies", 
      "proportion", 
      "individuals", 
      "strategies", 
      "lower values", 
      "period", 
      "cost", 
      "values", 
      "introduction", 
      "spite", 
      "seasonal variation", 
      "policy"
    ], 
    "name": "Pulse vaccination strategy in the SIR epidemic model", 
    "pagination": "1123-1148", 
    "productId": [
      {
        "name": "dimensions_id", 
        "type": "PropertyValue", 
        "value": [
          "pub.1054615077"
        ]
      }, 
      {
        "name": "doi", 
        "type": "PropertyValue", 
        "value": [
          "10.1006/s0092-8240(98)90005-2"
        ]
      }, 
      {
        "name": "pubmed_id", 
        "type": "PropertyValue", 
        "value": [
          "9866452"
        ]
      }
    ], 
    "sameAs": [
      "https://doi.org/10.1006/s0092-8240(98)90005-2", 
      "https://app.dimensions.ai/details/publication/pub.1054615077"
    ], 
    "sdDataset": "articles", 
    "sdDatePublished": "2022-10-01T06:30", 
    "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
    "sdPublisher": {
      "name": "Springer Nature - SN SciGraph project", 
      "type": "Organization"
    }, 
    "sdSource": "s3://com-springernature-scigraph/baseset/20221001/entities/gbq_results/article/article_286.jsonl", 
    "type": "ScholarlyArticle", 
    "url": "https://doi.org/10.1006/s0092-8240(98)90005-2"
  }
]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1006/s0092-8240(98)90005-2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1006/s0092-8240(98)90005-2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1006/s0092-8240(98)90005-2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1006/s0092-8240(98)90005-2'


 

This table displays all metadata directly associated to this object as RDF triples.

175 TRIPLES      21 PREDICATES      88 URIs      77 LITERALS      15 BLANK NODES

Subject Predicate Object
1 sg:pub.10.1006/s0092-8240(98)90005-2 schema:about N006ef3f0053c43e48b5a0f1883894954
2 N10d69de023804f7da1f943082bf34340
3 N1428ecb609f149d4a936cae6ed0c70a5
4 N4c74caaa11e744439db8322db95ab321
5 N6e8f2ba2e6da40eb8aff7cfc524f819c
6 N6ee167acd21141f998c20f548b3660bc
7 N981d82eb1e49484db70b4b53d8b0ea64
8 Nfccc97609a1b44038a64ebde5b0aa6c7
9 anzsrc-for:01
10 anzsrc-for:06
11 schema:author N52b60b3a59244465a8e2e3689d1134d9
12 schema:citation sg:pub.10.1007/bf00221337
13 sg:pub.10.1007/bf00276232
14 sg:pub.10.1038/344734a0
15 schema:datePublished 1998-11
16 schema:datePublishedReg 1998-11-01
17 schema:description Theoretical results show that the measles ‘pulse’ vaccination strategy can be distinguished from the conventional strategies in leading to disease eradication at relatively low values of vaccination. Using the SIR epidemic model we showed that under a planned pulse vaccination regime the system converges to a stable solution with the number of infectious individuals equal to zero. We showed that pulse vaccination leads to epidemics eradication if certain conditions regarding the magnitude of vaccination proportion and on the period of the pulses are adhered to. Our theoretical results are confirmed by numerical simulations. The introduction of seasonal variation into the basic SIR model leads to periodic and chaotic dynamics of epidemics. We showed that under seasonal variation, in spite of the complex dynamics of the system, pulse vaccination still leads to epidemic eradication. We derived the conditions for epidemic eradication under various constraints and showed their dependence on the parameters of the epidemic. We compared effectiveness and cost of constant, pulse and mixed vaccination policies.
18 schema:genre article
19 schema:isAccessibleForFree false
20 schema:isPartOf N6491e64f5c1d477693dd9ec84042c63a
21 Ne75cae0548964d05baa92e1a341ffa5b
22 sg:journal.1018370
23 schema:keywords SIR epidemic model
24 SIR model
25 basic SIR model
26 certain conditions
27 chaotic dynamics
28 complex dynamics
29 conditions
30 constraints
31 conventional strategies
32 cost
33 dependence
34 disease eradication
35 dynamics
36 effectiveness
37 epidemic
38 epidemic eradication
39 epidemic model
40 eradication
41 individuals
42 infectious individuals
43 introduction
44 lower values
45 magnitude
46 measles
47 model
48 number
49 numerical simulations
50 parameters
51 period
52 policy
53 proportion
54 pulse vaccination
55 pulse vaccination strategy
56 pulses
57 regime
58 results
59 seasonal variation
60 simulations
61 solution
62 spite
63 stable solutions
64 strategies
65 system
66 theoretical results
67 vaccination
68 vaccination policy
69 vaccination proportion
70 vaccination regime
71 vaccination strategies
72 values
73 variation
74 schema:name Pulse vaccination strategy in the SIR epidemic model
75 schema:pagination 1123-1148
76 schema:productId N34cdc1faa7b94c55b2530f350b23070e
77 Nac9340f53e40467689932a0a864170fb
78 Nbf738c603f3143cb94553369dc0d4daf
79 schema:sameAs https://app.dimensions.ai/details/publication/pub.1054615077
80 https://doi.org/10.1006/s0092-8240(98)90005-2
81 schema:sdDatePublished 2022-10-01T06:30
82 schema:sdLicense https://scigraph.springernature.com/explorer/license/
83 schema:sdPublisher Nf92db2ae6343452db392199933808773
84 schema:url https://doi.org/10.1006/s0092-8240(98)90005-2
85 sgo:license sg:explorer/license/
86 sgo:sdDataset articles
87 rdf:type schema:ScholarlyArticle
88 N006ef3f0053c43e48b5a0f1883894954 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
89 schema:name Measles Vaccine
90 rdf:type schema:DefinedTerm
91 N10d69de023804f7da1f943082bf34340 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
92 schema:name Computer Simulation
93 rdf:type schema:DefinedTerm
94 N1428ecb609f149d4a936cae6ed0c70a5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
95 schema:name Seasons
96 rdf:type schema:DefinedTerm
97 N34cdc1faa7b94c55b2530f350b23070e schema:name dimensions_id
98 schema:value pub.1054615077
99 rdf:type schema:PropertyValue
100 N4c74caaa11e744439db8322db95ab321 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
101 schema:name Measles
102 rdf:type schema:DefinedTerm
103 N52b60b3a59244465a8e2e3689d1134d9 rdf:first sg:person.012716666071.45
104 rdf:rest Nca1e76a86a4048998cb4c7d63fc1ae43
105 N6491e64f5c1d477693dd9ec84042c63a schema:volumeNumber 60
106 rdf:type schema:PublicationVolume
107 N6e8f2ba2e6da40eb8aff7cfc524f819c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
108 schema:name Humans
109 rdf:type schema:DefinedTerm
110 N6ee167acd21141f998c20f548b3660bc schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
111 schema:name Cost-Benefit Analysis
112 rdf:type schema:DefinedTerm
113 N94c52cc6afed496c8f006a6a705d73b6 rdf:first sg:person.01014716607.27
114 rdf:rest rdf:nil
115 N981d82eb1e49484db70b4b53d8b0ea64 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
116 schema:name Models, Biological
117 rdf:type schema:DefinedTerm
118 Nac9340f53e40467689932a0a864170fb schema:name pubmed_id
119 schema:value 9866452
120 rdf:type schema:PropertyValue
121 Nbf738c603f3143cb94553369dc0d4daf schema:name doi
122 schema:value 10.1006/s0092-8240(98)90005-2
123 rdf:type schema:PropertyValue
124 Nca1e76a86a4048998cb4c7d63fc1ae43 rdf:first sg:person.01257423733.55
125 rdf:rest N94c52cc6afed496c8f006a6a705d73b6
126 Ne75cae0548964d05baa92e1a341ffa5b schema:issueNumber 6
127 rdf:type schema:PublicationIssue
128 Nf92db2ae6343452db392199933808773 schema:name Springer Nature - SN SciGraph project
129 rdf:type schema:Organization
130 Nfccc97609a1b44038a64ebde5b0aa6c7 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
131 schema:name Vaccination
132 rdf:type schema:DefinedTerm
133 anzsrc-for:01 schema:inDefinedTermSet anzsrc-for:
134 schema:name Mathematical Sciences
135 rdf:type schema:DefinedTerm
136 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
137 schema:name Biological Sciences
138 rdf:type schema:DefinedTerm
139 sg:journal.1018370 schema:issn 0092-8240
140 1522-9602
141 schema:name Bulletin of Mathematical Biology
142 schema:publisher Springer Nature
143 rdf:type schema:Periodical
144 sg:person.01014716607.27 schema:affiliation grid-institutes:grid.12136.37
145 schema:familyName Agur
146 schema:givenName Zvia
147 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01014716607.27
148 rdf:type schema:Person
149 sg:person.01257423733.55 schema:affiliation grid-institutes:grid.446088.6
150 schema:familyName Stone
151 schema:givenName Lewi
152 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01257423733.55
153 rdf:type schema:Person
154 sg:person.012716666071.45 schema:affiliation grid-institutes:grid.12136.37
155 schema:familyName Shulgin
156 schema:givenName Boris
157 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012716666071.45
158 rdf:type schema:Person
159 sg:pub.10.1007/bf00221337 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033592485
160 https://doi.org/10.1007/bf00221337
161 rdf:type schema:CreativeWork
162 sg:pub.10.1007/bf00276232 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037932814
163 https://doi.org/10.1007/bf00276232
164 rdf:type schema:CreativeWork
165 sg:pub.10.1038/344734a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018498622
166 https://doi.org/10.1038/344734a0
167 rdf:type schema:CreativeWork
168 grid-institutes:grid.12136.37 schema:alternateName Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel
169 schema:name Department of Cell Research and Immunology, Department of Zoology, Tel-Aviv University, 69978, Ramat-Aviv, Tel-Aviv, Israel
170 Department of Physics, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia
171 The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia
172 rdf:type schema:Organization
173 grid-institutes:grid.446088.6 schema:alternateName The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia
174 schema:name The Porter Super Center for Ecological and Environmental Studies, Saratov State University, Astrakhanskaya 83, 410026, Saratov, Russia
175 rdf:type schema:Organization
 




Preview window. Press ESC to close (or click here)


...