A model for the emergence of adaptive subsystems View Full Text


Ontology type: schema:ScholarlyArticle     


Article Info

DATE

2003-01

AUTHORS

H. Dopazo, M. B. Gordon, R. Perazzo, S. Risau-Gusman

ABSTRACT

We investigate the interaction of learning and evolution in a changing environment. A stable learning capability is regarded as an emergent adaptive system evolved by natural selection of genetic variants. We consider the evolution of an asexual population. Each genotype can have ‘fixed’ and ‘flexible’ alleles. The former express themselves as synaptic connections that remain unchanged during ontogeny and the latter as synapses that can be adjusted through a learning algorithm. Evolution is modelled using genetic algorithms and the changing environment is represented by two optimal synaptic patterns that alternate a fixed number of times during the ‘life’ of the individuals. The amplitude of the change is related to the Hamming distance between the two optimal patterns and the rate of change to the frequency with which both exchange roles. This model is an extension of that of Hinton and Nowlan in which the fitness is given by a probabilistic measure of the Hamming distance to the optimum. We find that two types of evolutionary pathways are possible depending upon how difficult (costly) it is to cope with the changes of the environment. In one case the population loses the learning ability, and the individuals inherit fixed synapses that are optimal in only one of the environmental states. In the other case a flexible subsystem emerges that allows the individuals to adapt to the changes of the environment. The model helps us to understand how an adaptive subsystem can emerge as the result of the tradeoff between the exploitation of a congenital structure and the exploration of the adaptive capabilities practised by learning. More... »

PAGES

27-56

References to SciGraph publications

  • 1987-10. When learning guides evolution in NATURE
  • 2001-01. A model for the interaction of learning and evolution in BULLETIN OF MATHEMATICAL BIOLOGY
  • Identifiers

    URI

    http://scigraph.springernature.com/pub.10.1006/bulm.2002.0315

    DOI

    http://dx.doi.org/10.1006/bulm.2002.0315

    DIMENSIONS

    https://app.dimensions.ai/details/publication/pub.1002464202

    PUBMED

    https://www.ncbi.nlm.nih.gov/pubmed/12597115


    Indexing Status Check whether this publication has been indexed by Scopus and Web Of Science using the SN Indexing Status Tool
    Incoming Citations Browse incoming citations for this publication using opencitations.net

    JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/06", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Biological Sciences", 
            "type": "DefinedTerm"
          }, 
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/0604", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "name": "Genetics", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Adaptation, Biological", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Algorithms", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Alleles", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Animals", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Biological Evolution", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Genotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Humans", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Learning", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Genetic", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Models, Statistical", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Neural Networks, Computer", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Phenotype", 
            "type": "DefinedTerm"
          }, 
          {
            "inDefinedTermSet": "https://www.nlm.nih.gov/mesh/", 
            "name": "Synapses", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "affiliation": {
              "alternateName": "Departamento de Biolog\u00eda, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabell\u00f3n 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina", 
              "id": "http://www.grid.ac/institutes/grid.7345.5", 
              "name": [
                "Departamento de Biolog\u00eda, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabell\u00f3n 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Dopazo", 
            "givenName": "H.", 
            "id": "sg:person.01070225425.35", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070225425.35"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Laboratoire Leibniz-IMAG, 46, ave. F\u00e9lix Viallet, 38031, Grenoble Cedex, France", 
              "id": "http://www.grid.ac/institutes/None", 
              "name": [
                "Laboratoire Leibniz-IMAG, 46, ave. F\u00e9lix Viallet, 38031, Grenoble Cedex, France"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Gordon", 
            "givenName": "M. B.", 
            "id": "sg:person.07460644201.85", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07460644201.85"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Departamento de F\u00edsica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabell\u00f3n 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina", 
              "id": "http://www.grid.ac/institutes/grid.7345.5", 
              "name": [
                "Departamento de F\u00edsica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabell\u00f3n 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Perazzo", 
            "givenName": "R.", 
            "id": "sg:person.012252317761.53", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012252317761.53"
            ], 
            "type": "Person"
          }, 
          {
            "affiliation": {
              "alternateName": "Zentrum f\u00fcr Interdisziplin\u00e4re Forschung, Universit\u00e4t Bielefeld, Wellenberg 1, D-33615, Bielefeld, Germany", 
              "id": "http://www.grid.ac/institutes/grid.7491.b", 
              "name": [
                "Zentrum f\u00fcr Interdisziplin\u00e4re Forschung, Universit\u00e4t Bielefeld, Wellenberg 1, D-33615, Bielefeld, Germany"
              ], 
              "type": "Organization"
            }, 
            "familyName": "Risau-Gusman", 
            "givenName": "S.", 
            "id": "sg:person.01020545507.49", 
            "sameAs": [
              "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020545507.49"
            ], 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1038/329761a0", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1038581218", 
              "https://doi.org/10.1038/329761a0"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1006/bulm.2000.0207", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1037373160", 
              "https://doi.org/10.1006/bulm.2000.0207"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2003-01", 
        "datePublishedReg": "2003-01-01", 
        "description": "We investigate the interaction of learning and evolution in a changing environment. A stable learning capability is regarded as an emergent adaptive system evolved by natural selection of genetic variants. We consider the evolution of an asexual population. Each genotype can have \u2018fixed\u2019 and \u2018flexible\u2019 alleles. The former express themselves as synaptic connections that remain unchanged during ontogeny and the latter as synapses that can be adjusted through a learning algorithm. Evolution is modelled using genetic algorithms and the changing environment is represented by two optimal synaptic patterns that alternate a fixed number of times during the \u2018life\u2019 of the individuals. The amplitude of the change is related to the Hamming distance between the two optimal patterns and the rate of change to the frequency with which both exchange roles. This model is an extension of that of Hinton and Nowlan in which the fitness is given by a probabilistic measure of the Hamming distance to the optimum. We find that two types of evolutionary pathways are possible depending upon how difficult (costly) it is to cope with the changes of the environment. In one case the population loses the learning ability, and the individuals inherit fixed synapses that are optimal in only one of the environmental states. In the other case a flexible subsystem emerges that allows the individuals to adapt to the changes of the environment. The model helps us to understand how an adaptive subsystem can emerge as the result of the tradeoff between the exploitation of a congenital structure and the exploration of the adaptive capabilities practised by learning.", 
        "genre": "article", 
        "id": "sg:pub.10.1006/bulm.2002.0315", 
        "inLanguage": "en", 
        "isAccessibleForFree": false, 
        "isPartOf": [
          {
            "id": "sg:journal.1018370", 
            "issn": [
              "0092-8240", 
              "1522-9602"
            ], 
            "name": "Bulletin of Mathematical Biology", 
            "publisher": "Springer Nature", 
            "type": "Periodical"
          }, 
          {
            "issueNumber": "1", 
            "type": "PublicationIssue"
          }, 
          {
            "type": "PublicationVolume", 
            "volumeNumber": "65"
          }
        ], 
        "keywords": [
          "asexual populations", 
          "evolutionary pathways", 
          "natural selection", 
          "interaction of learning", 
          "genetic variants", 
          "adaptive subsystems", 
          "evolution", 
          "environmental state", 
          "congenital structure", 
          "pathway", 
          "alleles", 
          "synapses", 
          "fitness", 
          "ontogeny", 
          "population", 
          "synaptic connections", 
          "synaptic patterns", 
          "genotypes", 
          "patterns", 
          "variants", 
          "adaptive capabilities", 
          "environment", 
          "changes", 
          "Nowlan", 
          "role", 
          "individuals", 
          "selection", 
          "interaction", 
          "optimum", 
          "exploitation", 
          "exchange roles", 
          "ability", 
          "emergence", 
          "optimal pattern", 
          "distance", 
          "structure", 
          "Hinton", 
          "rate of change", 
          "types", 
          "number", 
          "model", 
          "results", 
          "rate", 
          "number of times", 
          "system", 
          "learning ability", 
          "capability", 
          "frequency", 
          "state", 
          "time", 
          "extension", 
          "exploration", 
          "connection", 
          "flexible subsystem", 
          "life", 
          "adaptive systems", 
          "tradeoff", 
          "cases", 
          "measures", 
          "Hamming distance", 
          "probabilistic measure", 
          "genetic algorithm", 
          "learning capabilities", 
          "learning", 
          "amplitude", 
          "subsystems", 
          "algorithm", 
          "learning algorithm", 
          "stable learning capability", 
          "emergent adaptive system", 
          "optimal synaptic patterns"
        ], 
        "name": "A model for the emergence of adaptive subsystems", 
        "pagination": "27-56", 
        "productId": [
          {
            "name": "dimensions_id", 
            "type": "PropertyValue", 
            "value": [
              "pub.1002464202"
            ]
          }, 
          {
            "name": "doi", 
            "type": "PropertyValue", 
            "value": [
              "10.1006/bulm.2002.0315"
            ]
          }, 
          {
            "name": "pubmed_id", 
            "type": "PropertyValue", 
            "value": [
              "12597115"
            ]
          }
        ], 
        "sameAs": [
          "https://doi.org/10.1006/bulm.2002.0315", 
          "https://app.dimensions.ai/details/publication/pub.1002464202"
        ], 
        "sdDataset": "articles", 
        "sdDatePublished": "2022-01-01T18:13", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20220101/entities/gbq_results/article/article_373.jsonl", 
        "type": "ScholarlyArticle", 
        "url": "https://doi.org/10.1006/bulm.2002.0315"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/pub.10.1006/bulm.2002.0315'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/pub.10.1006/bulm.2002.0315'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/pub.10.1006/bulm.2002.0315'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/pub.10.1006/bulm.2002.0315'


     

    This table displays all metadata directly associated to this object as RDF triples.

    222 TRIPLES      22 PREDICATES      113 URIs      103 LITERALS      20 BLANK NODES

    Subject Predicate Object
    1 sg:pub.10.1006/bulm.2002.0315 schema:about N20cd4f3099e64235b39ec9a41c71ea08
    2 N2e4505a9fd4e4cfbbed2649f779e7cd1
    3 N2e58e8e3450146c5ae5a8c0ea52d80f5
    4 N2f6662895e8c436fa06cccd102a883e1
    5 N3aaf09faab2a4572a2cc2226c5eeb3bd
    6 N7e0b0292f71f4a3bb615780d72ffa699
    7 N8c79326fdad64940985f95004ac2e581
    8 N90a2a06559ee44f8bc361dee7075be82
    9 N9f6c46eae11c4cb88d1e6b8b7930e73d
    10 Nc21c677e7dbc44149587d2a5393d567c
    11 Nd93c99594dd44150b3df6a02b434e354
    12 Nf643ac25e5374157a270794124918204
    13 Nfb5257077522427ba1c4ad05db68a8d2
    14 anzsrc-for:06
    15 anzsrc-for:0604
    16 schema:author N9dd36006056247cfb6fad7de35afbf57
    17 schema:citation sg:pub.10.1006/bulm.2000.0207
    18 sg:pub.10.1038/329761a0
    19 schema:datePublished 2003-01
    20 schema:datePublishedReg 2003-01-01
    21 schema:description We investigate the interaction of learning and evolution in a changing environment. A stable learning capability is regarded as an emergent adaptive system evolved by natural selection of genetic variants. We consider the evolution of an asexual population. Each genotype can have ‘fixed’ and ‘flexible’ alleles. The former express themselves as synaptic connections that remain unchanged during ontogeny and the latter as synapses that can be adjusted through a learning algorithm. Evolution is modelled using genetic algorithms and the changing environment is represented by two optimal synaptic patterns that alternate a fixed number of times during the ‘life’ of the individuals. The amplitude of the change is related to the Hamming distance between the two optimal patterns and the rate of change to the frequency with which both exchange roles. This model is an extension of that of Hinton and Nowlan in which the fitness is given by a probabilistic measure of the Hamming distance to the optimum. We find that two types of evolutionary pathways are possible depending upon how difficult (costly) it is to cope with the changes of the environment. In one case the population loses the learning ability, and the individuals inherit fixed synapses that are optimal in only one of the environmental states. In the other case a flexible subsystem emerges that allows the individuals to adapt to the changes of the environment. The model helps us to understand how an adaptive subsystem can emerge as the result of the tradeoff between the exploitation of a congenital structure and the exploration of the adaptive capabilities practised by learning.
    22 schema:genre article
    23 schema:inLanguage en
    24 schema:isAccessibleForFree false
    25 schema:isPartOf N3cff049ba0ad4ea9ab1a802ccae59918
    26 Ndc1bf1314ece490bb2512b8fdad7aad0
    27 sg:journal.1018370
    28 schema:keywords Hamming distance
    29 Hinton
    30 Nowlan
    31 ability
    32 adaptive capabilities
    33 adaptive subsystems
    34 adaptive systems
    35 algorithm
    36 alleles
    37 amplitude
    38 asexual populations
    39 capability
    40 cases
    41 changes
    42 congenital structure
    43 connection
    44 distance
    45 emergence
    46 emergent adaptive system
    47 environment
    48 environmental state
    49 evolution
    50 evolutionary pathways
    51 exchange roles
    52 exploitation
    53 exploration
    54 extension
    55 fitness
    56 flexible subsystem
    57 frequency
    58 genetic algorithm
    59 genetic variants
    60 genotypes
    61 individuals
    62 interaction
    63 interaction of learning
    64 learning
    65 learning ability
    66 learning algorithm
    67 learning capabilities
    68 life
    69 measures
    70 model
    71 natural selection
    72 number
    73 number of times
    74 ontogeny
    75 optimal pattern
    76 optimal synaptic patterns
    77 optimum
    78 pathway
    79 patterns
    80 population
    81 probabilistic measure
    82 rate
    83 rate of change
    84 results
    85 role
    86 selection
    87 stable learning capability
    88 state
    89 structure
    90 subsystems
    91 synapses
    92 synaptic connections
    93 synaptic patterns
    94 system
    95 time
    96 tradeoff
    97 types
    98 variants
    99 schema:name A model for the emergence of adaptive subsystems
    100 schema:pagination 27-56
    101 schema:productId N4c1a8dd0d9bd4648b56bdd84df49ab27
    102 Nb07a410c7129487596db349bd0d98e75
    103 Nd5c9fbad165f43e090a75dde50358cda
    104 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002464202
    105 https://doi.org/10.1006/bulm.2002.0315
    106 schema:sdDatePublished 2022-01-01T18:13
    107 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    108 schema:sdPublisher N791894ee739641a18f5adf39627e2c16
    109 schema:url https://doi.org/10.1006/bulm.2002.0315
    110 sgo:license sg:explorer/license/
    111 sgo:sdDataset articles
    112 rdf:type schema:ScholarlyArticle
    113 N20cd4f3099e64235b39ec9a41c71ea08 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    114 schema:name Animals
    115 rdf:type schema:DefinedTerm
    116 N2e4505a9fd4e4cfbbed2649f779e7cd1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    117 schema:name Models, Statistical
    118 rdf:type schema:DefinedTerm
    119 N2e58e8e3450146c5ae5a8c0ea52d80f5 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    120 schema:name Alleles
    121 rdf:type schema:DefinedTerm
    122 N2f2309f7c0264dee9f459f5beb42dd50 rdf:first sg:person.012252317761.53
    123 rdf:rest Nd45d502f53ce4813aea0bf516ee9c21d
    124 N2f6662895e8c436fa06cccd102a883e1 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    125 schema:name Algorithms
    126 rdf:type schema:DefinedTerm
    127 N3aaf09faab2a4572a2cc2226c5eeb3bd schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    128 schema:name Biological Evolution
    129 rdf:type schema:DefinedTerm
    130 N3cff049ba0ad4ea9ab1a802ccae59918 schema:issueNumber 1
    131 rdf:type schema:PublicationIssue
    132 N4c1a8dd0d9bd4648b56bdd84df49ab27 schema:name doi
    133 schema:value 10.1006/bulm.2002.0315
    134 rdf:type schema:PropertyValue
    135 N791894ee739641a18f5adf39627e2c16 schema:name Springer Nature - SN SciGraph project
    136 rdf:type schema:Organization
    137 N7e0b0292f71f4a3bb615780d72ffa699 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    138 schema:name Models, Genetic
    139 rdf:type schema:DefinedTerm
    140 N8621711b1cdb48a4b6e016f8d8186e6e rdf:first sg:person.07460644201.85
    141 rdf:rest N2f2309f7c0264dee9f459f5beb42dd50
    142 N8c79326fdad64940985f95004ac2e581 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    143 schema:name Adaptation, Biological
    144 rdf:type schema:DefinedTerm
    145 N90a2a06559ee44f8bc361dee7075be82 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    146 schema:name Humans
    147 rdf:type schema:DefinedTerm
    148 N9dd36006056247cfb6fad7de35afbf57 rdf:first sg:person.01070225425.35
    149 rdf:rest N8621711b1cdb48a4b6e016f8d8186e6e
    150 N9f6c46eae11c4cb88d1e6b8b7930e73d schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    151 schema:name Learning
    152 rdf:type schema:DefinedTerm
    153 Nb07a410c7129487596db349bd0d98e75 schema:name dimensions_id
    154 schema:value pub.1002464202
    155 rdf:type schema:PropertyValue
    156 Nc21c677e7dbc44149587d2a5393d567c schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    157 schema:name Neural Networks, Computer
    158 rdf:type schema:DefinedTerm
    159 Nd45d502f53ce4813aea0bf516ee9c21d rdf:first sg:person.01020545507.49
    160 rdf:rest rdf:nil
    161 Nd5c9fbad165f43e090a75dde50358cda schema:name pubmed_id
    162 schema:value 12597115
    163 rdf:type schema:PropertyValue
    164 Nd93c99594dd44150b3df6a02b434e354 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    165 schema:name Synapses
    166 rdf:type schema:DefinedTerm
    167 Ndc1bf1314ece490bb2512b8fdad7aad0 schema:volumeNumber 65
    168 rdf:type schema:PublicationVolume
    169 Nf643ac25e5374157a270794124918204 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    170 schema:name Genotype
    171 rdf:type schema:DefinedTerm
    172 Nfb5257077522427ba1c4ad05db68a8d2 schema:inDefinedTermSet https://www.nlm.nih.gov/mesh/
    173 schema:name Phenotype
    174 rdf:type schema:DefinedTerm
    175 anzsrc-for:06 schema:inDefinedTermSet anzsrc-for:
    176 schema:name Biological Sciences
    177 rdf:type schema:DefinedTerm
    178 anzsrc-for:0604 schema:inDefinedTermSet anzsrc-for:
    179 schema:name Genetics
    180 rdf:type schema:DefinedTerm
    181 sg:journal.1018370 schema:issn 0092-8240
    182 1522-9602
    183 schema:name Bulletin of Mathematical Biology
    184 schema:publisher Springer Nature
    185 rdf:type schema:Periodical
    186 sg:person.01020545507.49 schema:affiliation grid-institutes:grid.7491.b
    187 schema:familyName Risau-Gusman
    188 schema:givenName S.
    189 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01020545507.49
    190 rdf:type schema:Person
    191 sg:person.01070225425.35 schema:affiliation grid-institutes:grid.7345.5
    192 schema:familyName Dopazo
    193 schema:givenName H.
    194 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01070225425.35
    195 rdf:type schema:Person
    196 sg:person.012252317761.53 schema:affiliation grid-institutes:grid.7345.5
    197 schema:familyName Perazzo
    198 schema:givenName R.
    199 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.012252317761.53
    200 rdf:type schema:Person
    201 sg:person.07460644201.85 schema:affiliation grid-institutes:None
    202 schema:familyName Gordon
    203 schema:givenName M. B.
    204 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.07460644201.85
    205 rdf:type schema:Person
    206 sg:pub.10.1006/bulm.2000.0207 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037373160
    207 https://doi.org/10.1006/bulm.2000.0207
    208 rdf:type schema:CreativeWork
    209 sg:pub.10.1038/329761a0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038581218
    210 https://doi.org/10.1038/329761a0
    211 rdf:type schema:CreativeWork
    212 grid-institutes:None schema:alternateName Laboratoire Leibniz-IMAG, 46, ave. Félix Viallet, 38031, Grenoble Cedex, France
    213 schema:name Laboratoire Leibniz-IMAG, 46, ave. Félix Viallet, 38031, Grenoble Cedex, France
    214 rdf:type schema:Organization
    215 grid-institutes:grid.7345.5 schema:alternateName Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
    216 Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina
    217 schema:name Departamento de Biología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, 1428, Buenos Aires, Argentina
    218 Departamento de Física, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón 1, Ciudad Universitaria, 1428, Buenos Aires, Argentina
    219 rdf:type schema:Organization
    220 grid-institutes:grid.7491.b schema:alternateName Zentrum für Interdisziplinäre Forschung, Universität Bielefeld, Wellenberg 1, D-33615, Bielefeld, Germany
    221 schema:name Zentrum für Interdisziplinäre Forschung, Universität Bielefeld, Wellenberg 1, D-33615, Bielefeld, Germany
    222 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...