Ludwig Fahrmeir


Ontology type: schema:Person     


Person Info

NAME

Ludwig

SURNAME

Fahrmeir

Publications in SciGraph latest 50 shown

  • 2016 Springer-Lehrbuch in NONE
  • 2015-07 Bayesian accelerated failure time models based on penalized mixtures of Gaussians: regularization and variable selection in ASTA ADVANCES IN STATISTICAL ANALYSIS
  • 2014-03 Classification of brain activation via spatial Bayesian variable selection in fMRI regression in ADVANCES IN DATA ANALYSIS AND CLASSIFICATION
  • 2013-10 Penalized likelihood and Bayesian function selection in regression models in ASTA ADVANCES IN STATISTICAL ANALYSIS
  • 2013 Bayesian Smoothing, Shrinkage and Variable Selection in Hazard Regression in ROBUSTNESS AND COMPLEX DATA STRUCTURES
  • 2013 Regression, Models, Methods and Applications in NONE
  • 2012-01 Additive mixed models with Dirichlet process mixture and P-spline priors in ASTA ADVANCES IN STATISTICAL ANALYSIS
  • 2011 Bayesian Semiparametric Regression in INTERNATIONAL ENCYCLOPEDIA OF STATISTICAL SCIENCE
  • 2010-04 Bayesian regularisation in structured additive regression: a unifying perspective on shrinkage, smoothing and predictor selection in STATISTICS AND COMPUTING
  • 2010 Statistik in NONE
  • 2009 Regression, Modelle, Methoden und Anwendungen in NONE
  • 2009 Arbeitsbuch Statistik in NONE
  • 2008-12 Alternative regression models to assess increase in childhood BMI in BMC MEDICAL RESEARCH METHODOLOGY
  • 2008-05 Spatial quantitative analysis of fluorescently labeled nuclear structures: Problems, methods, pitfalls in CHROMOSOME RESEARCH
  • 2008 On the Identification of Trend and Correlation in Temporal and Spatial Regression in RECENT ADVANCES IN LINEAR MODELS AND RELATED AREAS
  • 2007-09 A Bayesian Semiparametric Latent Variable Model for Mixed Responses in PSYCHOMETRIKA
  • 2007-04 Geoadditive regression for analyzing small-scale geographical variability in car insurance in BLÄTTER DER DGVFM
  • 2007 Kategoriale Regressionsmodelle in REGRESSION
  • 2007 Spezielle Testprobleme in STATISTIK
  • 2007 Mehrdimensionale Zufallsvariablen in STATISTIK
  • 2007 Varianzanalyse in STATISTIK
  • 2007 Univariate Deskription und Exploration von Daten in STATISTIK
  • 2007 Wahrscheinlichkeitsrechnung in STATISTIK
  • 2007 Stetige Zufallsvariablen in STATISTIK
  • 2007 Zeitreihen in STATISTIK
  • 2007 Generalisierte lineare Modelle in REGRESSION
  • 2007 Strukturiert-additive Regression in REGRESSION
  • 2007 Einführung in STATISTIK
  • 2007 Regressionsanalyse in STATISTIK
  • 2007 Mehr über Zufallsvariablen und Verteilungen in STATISTIK
  • 2007 Lineare Regressionsmodelle in REGRESSION
  • 2007 Diskrete Zufallsvariablen in STATISTIK
  • 2007 Einführung in REGRESSION
  • 2007 Parameterschätzung in STATISTIK
  • 2007 Nichtparametrische Regression in REGRESSION
  • 2007 Gemischte Modelle in REGRESSION
  • 2007 Testen von Hypothesen in STATISTIK
  • 2007 Multivariate Deskription und Exploration in STATISTIK
  • 2007 Regressionsmodelle in REGRESSION
  • 2005-12 Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo in BMC EVOLUTIONARY BIOLOGY
  • 2005 Varianzanalyse in ARBEITSBUCH STATISTIK
  • 2005 Multivariate Deskription und Exploration in ARBEITSBUCH STATISTIK
  • 2005 Spezielle Testprobleme in ARBEITSBUCH STATISTIK
  • 2005 Parameterschätzung in ARBEITSBUCH STATISTIK
  • 2005 Computeraufgaben in ARBEITSBUCH STATISTIK
  • 2005 Mehr über Zufallsvariablen und Verteilungen in ARBEITSBUCH STATISTIK
  • 2005 Stetige Zufallsvariablen in ARBEITSBUCH STATISTIK
  • 2005 Wahrscheinlichkeitsrechnung in ARBEITSBUCH STATISTIK
  • 2005 Univariate Deskription und Exploration von Daten in ARBEITSBUCH STATISTIK
  • 2005 Zeitreihen in ARBEITSBUCH STATISTIK
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "affiliation": [
          {
            "affiliation": {
              "id": "https://www.grid.ac/institutes/grid.5252.0", 
              "type": "Organization"
            }, 
            "isCurrent": true, 
            "type": "OrganizationRole"
          }, 
          {
            "id": "https://www.grid.ac/institutes/grid.6936.a", 
            "type": "Organization"
          }, 
          {
            "id": "https://www.grid.ac/institutes/grid.4567.0", 
            "type": "Organization"
          }
        ], 
        "familyName": "Fahrmeir", 
        "givenName": "Ludwig", 
        "id": "sg:person.0661512671.36", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.0661512671.36"
        ], 
        "sdDataset": "persons", 
        "sdDatePublished": "2019-03-07T14:51", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-researchers-20181010/20181011/dim_researchers/base/researchers_582.json", 
        "type": "Person"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/person.0661512671.36'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/person.0661512671.36'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/person.0661512671.36'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/person.0661512671.36'


     




    Preview window. Press ESC to close (or click here)


    ...