Christophe Ambroise


Ontology type: schema:Person     


Person Info

NAME

Christophe

SURNAME

Ambroise

Publications in SciGraph latest 50 shown

  • 2021-09-12 Hierarchical correction of p-values via an ultrametric tree running Ornstein-Uhlenbeck process in COMPUTATIONAL STATISTICS
  • 2021-02-19 AI-based mobile application to fight antibiotic resistance in NATURE COMMUNICATIONS
  • 2020-07-01 Fast computation of genome-metagenome interaction effects in ALGORITHMS FOR MOLECULAR BIOLOGY
  • 2019-11-15 Adjacency-constrained hierarchical clustering of a band similarity matrix with application to genomics in ALGORITHMS FOR MOLECULAR BIOLOGY
  • 2019-05-17 Systematic analysis of TruSeq, SMARTer and SMARTer Ultra-Low RNA-seq kits for standard, low and ultra-low quantity samples in SCIENTIFIC REPORTS
  • 2018-11-29 Learning the optimal scale for GWAS through hierarchical SNP aggregation in BMC BIOINFORMATICS
  • 2017-01-23 Eigen-Epistasis for detecting gene-gene interactions in BMC BIOINFORMATICS
  • 2015-11-20 Beyond support in two-stage variable selection in STATISTICS AND COMPUTING
  • 2015-05-08 Performance of a blockwise approach in variable selection using linkage disequilibrium information in BMC BIOINFORMATICS
  • 2010-06-17 Inferring multiple graphical structures in STATISTICS AND COMPUTING
  • 2009-07-31 Bayesian Methods for Graph Clustering in ADVANCES IN DATA ANALYSIS, DATA HANDLING AND BUSINESS INTELLIGENCE
  • 2008-12-17 Identification of functional modules based on transcriptional regulation structure in BMC PROCEEDINGS
  • 2007-06-29 An online classification EM algorithm based on the mixture model in STATISTICS AND COMPUTING
  • 2005 A Mixture Model-Based On-line CEM Algorithm in ADVANCES IN INTELLIGENT DATA ANALYSIS VI
  • 2005-01-01 Use of Micro Array Data via Model-based Classification in the Study and Prediction of Survival from Lung Cancer in METHODS OF MICROARRAY DATA ANALYSIS
  • 2003-06-24 Image Retrieval Using Mixture Models and EM Algorithm in IMAGE ANALYSIS
  • 2003 A Mixture Model Approach for Binned Data Clustering in ADVANCES IN INTELLIGENT DATA ANALYSIS V
  • 2003 Regularization Methods for Additive Models in ADVANCES IN INTELLIGENT DATA ANALYSIS V
  • 2002 Clustering and Models in CLASSIFICATION, AUTOMATION, AND NEW MEDIA
  • 2001-08-17 Boosting Mixture Models for Semi-supervised Learning in ARTIFICIAL NEURAL NETWORKS — ICANN 2001
  • 2000 EM Algorithm for Partially Known Labels in DATA ANALYSIS, CLASSIFICATION, AND RELATED METHODS
  • 2000 Clustering by maximizing a fuzzy classification maximum likelihood criterion in COMPSTAT
  • 1997 Clustering of Spatial Data by the EM Algorithm in GEOENV I — GEOSTATISTICS FOR ENVIRONMENTAL APPLICATIONS
  • 1996-09 Constrained clustering and Kohonen Self-Organizing Maps in JOURNAL OF CLASSIFICATION
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "affiliation": [
          {
            "affiliation": {
              "id": "http://www.grid.ac/institutes/grid.8390.2", 
              "type": "Organization"
            }, 
            "isCurrent": true, 
            "type": "OrganizationRole"
          }, 
          {
            "id": "http://www.grid.ac/institutes/grid.454350.3", 
            "type": "Organization"
          }, 
          {
            "id": "http://www.grid.ac/institutes/grid.6227.1", 
            "type": "Organization"
          }, 
          {
            "id": "http://www.grid.ac/institutes/grid.4444.0", 
            "type": "Organization"
          }, 
          {
            "id": "http://www.grid.ac/institutes/grid.507621.7", 
            "type": "Organization"
          }, 
          {
            "id": "http://www.grid.ac/institutes/grid.460789.4", 
            "type": "Organization"
          }, 
          {
            "id": "http://www.grid.ac/institutes/grid.462261.5", 
            "type": "Organization"
          }, 
          {
            "id": "http://www.grid.ac/institutes/grid.462844.8", 
            "type": "Organization"
          }
        ], 
        "familyName": "Ambroise", 
        "givenName": "Christophe", 
        "id": "sg:person.016650156731.69", 
        "identifier": [
          {
            "name": "orcid_id", 
            "type": "PropertyValue", 
            "value": "0000-0002-8148-0346"
          }
        ], 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650156731.69", 
          "https://orcid.org/0000-0002-8148-0346"
        ], 
        "sdDataset": "persons", 
        "sdDatePublished": "2021-11-01T19:31", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211101/entities/gbq_results/person/person_657.jsonl", 
        "type": "Person"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/person.016650156731.69'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/person.016650156731.69'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/person.016650156731.69'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/person.016650156731.69'


     

    This table displays all metadata directly associated to this object as RDF triples.

    35 TRIPLES      11 PREDICATES      20 URIs      8 LITERALS      3 BLANK NODES

    Subject Predicate Object
    1 sg:person.016650156731.69 schema:affiliation N74502dcaf8aa456c9969b0645261bfe6
    2 grid-institutes:grid.4444.0
    3 grid-institutes:grid.454350.3
    4 grid-institutes:grid.460789.4
    5 grid-institutes:grid.462261.5
    6 grid-institutes:grid.462844.8
    7 grid-institutes:grid.507621.7
    8 grid-institutes:grid.6227.1
    9 schema:familyName Ambroise
    10 schema:givenName Christophe
    11 schema:identifier N264b450684764d859d831b106c3ae159
    12 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.016650156731.69
    13 https://orcid.org/0000-0002-8148-0346
    14 schema:sdDatePublished 2021-11-01T19:31
    15 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    16 schema:sdPublisher Nbb1d338882404618a3f7ac3153a7f185
    17 sgo:license sg:explorer/license/
    18 sgo:sdDataset persons
    19 rdf:type schema:Person
    20 N264b450684764d859d831b106c3ae159 schema:name orcid_id
    21 schema:value 0000-0002-8148-0346
    22 rdf:type schema:PropertyValue
    23 N74502dcaf8aa456c9969b0645261bfe6 schema:affiliation grid-institutes:grid.8390.2
    24 sgo:isCurrent true
    25 rdf:type schema:OrganizationRole
    26 Nbb1d338882404618a3f7ac3153a7f185 schema:name Springer Nature - SN SciGraph project
    27 rdf:type schema:Organization
    28 grid-institutes:grid.4444.0 schema:Organization
    29 grid-institutes:grid.454350.3 schema:Organization
    30 grid-institutes:grid.460789.4 schema:Organization
    31 grid-institutes:grid.462261.5 schema:Organization
    32 grid-institutes:grid.462844.8 schema:Organization
    33 grid-institutes:grid.507621.7 schema:Organization
    34 grid-institutes:grid.6227.1 schema:Organization
    35 grid-institutes:grid.8390.2 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...