Zoltán Sasvári


Ontology type: schema:Person     


Person Info

NAME

Zoltán

SURNAME

Sasvári

Publications in SciGraph latest 50 shown

  • 2018 Spectral Theory of Stationary Random Fields and their Generalizations. A Short Historical Survey in INDEFINITE INNER PRODUCT SPACES, SCHUR ANALYSIS, AND DIFFERENTIAL EQUATIONS
  • 2012 On a Theorem of Karhunen and Related Moment Problems and Quadrature Formulae in SPECTRAL THEORY, MATHEMATICAL SYSTEM THEORY, EVOLUTION EQUATIONS, DIFFERENTIAL AND DIFFERENCE EQUATIONS
  • 2009 Correlation Functions of Intrinsically Stationary Random Fields in MODERN ANALYSIS AND APPLICATIONS
  • 2006 The Extension Problem for Positive Definite Functions. A Short Historical Survey in OPERATOR THEORY AND INDEFINITE INNER PRODUCT SPACES
  • 1999-12 Determinants, sums involving binomial coefficients, and moment sequences in ANALYSIS MATHEMATICA
  • 1999-01 The Characterization Problem for Isotropic Covariance Functions in MATHEMATICAL GEOSCIENCES
  • 1998 On the number of negative squares of certain functions in CONTRIBUTIONS TO OPERATOR THEORY IN SPACES WITH AN INDEFINITE METRIC
  • 1995-09 On norm dependent positive definite functions in MONATSHEFTE FÜR MATHEMATIK
  • 1992-07 On separately polynomial functions in ARCHIV DER MATHEMATIK
  • 1990-12 Definitizing polynomials of unitary and Hermitian operators in Pontrjagin spaces in MATHEMATISCHE ANNALEN
  • 1990-06 New proof of Naimark's theorem on the existence of nonpositive invariant subspaces for commuting families of unitary operators in Pontryagin spaces in MONATSHEFTE FÜR MATHEMATIK
  • 1989-04 Additivity of certain functionals and the construction of invariant integrals in MATHEMATISCHE ANNALEN
  • 1989-03 Functions with a finite number of negative squares on semigroups in MONATSHEFTE FÜR MATHEMATIK
  • 1987-06 Decomposition of positive definite functions defined on a neighbourhood of the identity in MONATSHEFTE FÜR MATHEMATIK
  • 1987 Characterizing the distributions of the random vectors X 1, X 2, X 3 by the distribution of the statistic (X 1–X 3, X 2–X 3) in STABILITY PROBLEMS FOR STOCHASTIC MODELS
  • 1986-09 The extension problem for measurable positive definite functions in MATHEMATISCHE ZEITSCHRIFT
  • 1986-03 Characterizing the distributions of the random variablesX1,X2,X3 by the distribution of (X1-X3,X2-X3) in PROBABILITY THEORY AND RELATED FIELDS
  • 1985-09 Indefinite functions on commutative groups in MONATSHEFTE FÜR MATHEMATIK
  • 1985-09 On bounded functions with a finite number of negative squares in MONATSHEFTE FÜR MATHEMATIK
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "familyName": "Sasv\u00e1ri", 
        "givenName": "Zolt\u00e1n", 
        "id": "sg:person.015631072137.62", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631072137.62"
        ], 
        "sdDataset": "persons", 
        "sdDatePublished": "2019-03-07T13:52", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-researchers-20181010/20181011/dim_researchers/base/researchers_1636.json", 
        "type": "Person"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/person.015631072137.62'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/person.015631072137.62'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/person.015631072137.62'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/person.015631072137.62'


     

    This table displays all metadata directly associated to this object as RDF triples.

    11 TRIPLES      9 PREDICATES      10 URIs      6 LITERALS      1 BLANK NODES

    Subject Predicate Object
    1 sg:person.015631072137.62 schema:familyName Sasvári
    2 schema:givenName Zoltán
    3 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.015631072137.62
    4 schema:sdDatePublished 2019-03-07T13:52
    5 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    6 schema:sdPublisher N63d6752474df46c8baa2b492a26b7027
    7 sgo:license sg:explorer/license/
    8 sgo:sdDataset persons
    9 rdf:type schema:Person
    10 N63d6752474df46c8baa2b492a26b7027 schema:name Springer Nature - SN SciGraph project
    11 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...