Bhabesh Deka


Ontology type: schema:Person     


Person Info

NAME

Bhabesh

SURNAME

Deka

Publications in SciGraph latest 50 shown

  • 2021-03-15 Do the beneficial fungi manage phytosanitary problems in the tea agro-ecosystem? in BIOCONTROL
  • 2021-02-19 Lecanicillium lecanii (Zimmermann) Zare & Gams, as an efficient biocontrol agent of tea thrips, Scirtothrips bispinosus Bagnall (Thysanoptera: Thripidae) in EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL
  • 2021-01-23 Eocanthecona furcellata (Wolff) (Hemiptera: Pentatomidae), a potential biocontrol agent of the black inch worm, Hyposidra talaca Walker (Lepidoptera: Geometridae) infesting tea in PHYTOPARASITICA
  • 2021-01-19 In silico tertiary structure prediction and evolutionary analysis of two DNA-binding proteins (DBP-1 and DBP-2) from Hyposidra talaca nucleopolyhedrovirus (HytaNPV) in BIOLOGIA
  • 2020-08-11 Sparse Representation based Super-Resolution of MRI Images with Non-Local Total Variation Regularization in SN COMPUTER SCIENCE
  • 2020-06-30 Investigation on HRV Signal Dynamics for Meditative Intervention in SOFT COMPUTING: THEORIES AND APPLICATIONS
  • 2020-06-29 Multichannel ECG Compression using Block-Sparsity-based Joint Compressive Sensing in CIRCUITS, SYSTEMS, AND SIGNAL PROCESSING
  • 2020-06-22 Role of beneficial fungi in managing diseases and insect pests of tea plantation in EGYPTIAN JOURNAL OF BIOLOGICAL PEST CONTROL
  • 2020-03-09 Role of Prosopis juliflora as a botanical synergist in enhancing the efficacy of neem kernel powder against tea red spider mites, Oligonychus coffeae (Acari: Tetranychidae) in SN APPLIED SCIENCES
  • 2019-11-25 Correction to: Pattern Recognition and Machine Intelligence in PATTERN RECOGNITION AND MACHINE INTELLIGENCE
  • 2019-11-25 Block-Sparsity Based Compressed Sensing for Multichannel ECG Reconstruction in PATTERN RECOGNITION AND MACHINE INTELLIGENCE
  • 2019-11-25 Group-Sparsity Based Compressed Sensing Reconstruction for Fast Parallel MRI in PATTERN RECOGNITION AND MACHINE INTELLIGENCE
  • 2019-11-25 Sparse Representation Based Super-Resolution of MRI Images with Non-Local Total Variation Regularization in PATTERN RECOGNITION AND MACHINE INTELLIGENCE
  • 2019-11-25 Sparsity Regularization Based Spatial-Spectral Super-Resolution of Multispectral Imagery in PATTERN RECOGNITION AND MACHINE INTELLIGENCE
  • 2019-05-28 Sparse representations and compressive sensing in multi-dimensional signal processing in CSI TRANSACTIONS ON ICT
  • 2019 Compressed Sensing Magnetic Resonance Image Reconstruction Algorithms, A Convex Optimization Approach in NONE
  • 2018-12-14 Multi-channel, Multi-slice, and Multi-contrast Compressed Sensing MRI Using Weighted Forest Sparsity and Joint TV Regularization Priors in SOFT COMPUTING FOR PROBLEM SOLVING
  • 2018-08-31 Author Correction: Comprehensive analysis of single molecule sequencing-derived complete genome and whole transcriptome of Hyposidra talaca nuclear polyhedrosis virus in SCIENTIFIC REPORTS
  • 2018-06-12 Comprehensive analysis of single molecule sequencing-derived complete genome and whole transcriptome of Hyposidra talaca nuclear polyhedrosis virus in SCIENTIFIC REPORTS
  • 2018-03-16 A Fast Satellite Image Super-Resolution Technique Using Multicore Processing in HYBRID INTELLIGENT SYSTEMS
  • 2017-10-29 Weighted Wavelet Tree Sparsity Regularization for Compressed Sensing Magnetic Resonance Image Reconstruction in ADVANCES IN ELECTRONICS, COMMUNICATION AND COMPUTING
  • 2017-10-29 Random-Valued Impulse Denoising Using a Fast l1-Minimization-Based Image Inpainting Technique in ADVANCES IN ELECTRONICS, COMMUNICATION AND COMPUTING
  • 2017-09-05 Magnetic resonance image reconstruction using fast interpolated compressed sensing in JOURNAL OF OPTICS
  • 2016-02-08 Sparse regularization method for the detection and removal of random-valued impulse noise in MULTIMEDIA TOOLS AND APPLICATIONS
  • 2015-06-18 A Practical Under-Sampling Pattern for Compressed Sensing MRI in ADVANCES IN COMMUNICATION AND COMPUTING
  • 2014-03-13 The Terpenoids Released by Persea bombycina Due to Feeding by Antheraea assama Westwood in NATIONAL ACADEMY SCIENCE LETTERS
  • 2013-12 Finite element method for a class of parabolic integro-differential equations with interfaces in INDIAN JOURNAL OF PURE AND APPLIED MATHEMATICS
  • 2013-08-16 Role of Visual Cues in Host Searching Behaviour of Exorista sorbillans Widemann, a Parasitoid of Muga Silk Worm, Antheraea assama Westwood in JOURNAL OF INSECT BEHAVIOR
  • 2012-11-06 Response of Exorista sorbillans to Volatiles of Host Plants of Antheraea assama, Westwood in NATIONAL ACADEMY SCIENCE LETTERS
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "affiliation": [
          {
            "affiliation": {
              "id": "http://www.grid.ac/institutes/grid.45982.32", 
              "type": "Organization"
            }, 
            "isCurrent": true, 
            "type": "OrganizationRole"
          }, 
          {
            "id": "http://www.grid.ac/institutes/grid.412023.6", 
            "type": "Organization"
          }, 
          {
            "id": "http://www.grid.ac/institutes/grid.482359.1", 
            "type": "Organization"
          }, 
          {
            "id": "http://www.grid.ac/institutes/grid.266900.b", 
            "type": "Organization"
          }, 
          {
            "id": "http://www.grid.ac/institutes/grid.417972.e", 
            "type": "Organization"
          }
        ], 
        "familyName": "Deka", 
        "givenName": "Bhabesh", 
        "id": "sg:person.01226363363.25", 
        "identifier": [
          {
            "name": "orcid_id", 
            "type": "PropertyValue", 
            "value": "0000-0002-9679-6159"
          }
        ], 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226363363.25", 
          "https://orcid.org/0000-0002-9679-6159"
        ], 
        "sdDataset": "persons", 
        "sdDatePublished": "2021-12-01T20:43", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-springernature-scigraph/baseset/20211201/entities/gbq_results/person/person_851.jsonl", 
        "type": "Person"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/person.01226363363.25'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/person.01226363363.25'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/person.01226363363.25'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/person.01226363363.25'


     

    This table displays all metadata directly associated to this object as RDF triples.

    29 TRIPLES      11 PREDICATES      17 URIs      8 LITERALS      3 BLANK NODES

    Subject Predicate Object
    1 sg:person.01226363363.25 schema:affiliation N655ef1b53b8a4fa29929099716749a03
    2 grid-institutes:grid.266900.b
    3 grid-institutes:grid.412023.6
    4 grid-institutes:grid.417972.e
    5 grid-institutes:grid.482359.1
    6 schema:familyName Deka
    7 schema:givenName Bhabesh
    8 schema:identifier N8f39f028c90543a9b01837495a016f93
    9 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01226363363.25
    10 https://orcid.org/0000-0002-9679-6159
    11 schema:sdDatePublished 2021-12-01T20:43
    12 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    13 schema:sdPublisher N0834f58c9d5242c28252b38e3052e3af
    14 sgo:license sg:explorer/license/
    15 sgo:sdDataset persons
    16 rdf:type schema:Person
    17 N0834f58c9d5242c28252b38e3052e3af schema:name Springer Nature - SN SciGraph project
    18 rdf:type schema:Organization
    19 N655ef1b53b8a4fa29929099716749a03 schema:affiliation grid-institutes:grid.45982.32
    20 sgo:isCurrent true
    21 rdf:type schema:OrganizationRole
    22 N8f39f028c90543a9b01837495a016f93 schema:name orcid_id
    23 schema:value 0000-0002-9679-6159
    24 rdf:type schema:PropertyValue
    25 grid-institutes:grid.266900.b schema:Organization
    26 grid-institutes:grid.412023.6 schema:Organization
    27 grid-institutes:grid.417972.e schema:Organization
    28 grid-institutes:grid.45982.32 schema:Organization
    29 grid-institutes:grid.482359.1 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...