Jan Hendrik Bruinier


Ontology type: schema:Person     


Person Info

NAME

Jan Hendrik

SURNAME

Bruinier

Publications in SciGraph latest 50 shown

  • 2018-06 Modularity of generating series of winding numbers in RESEARCH IN THE MATHEMATICAL SCIENCES
  • 2015-07 Heights of Kudla–Rapoport divisors and derivatives of L-functions in INVENTIONES MATHEMATICAE
  • 2013-12 Harmonic Maass forms and periods in MATHEMATISCHE ANNALEN
  • 2010-12 Identities and congruences for Ramanujan’s ω(q) in THE RAMANUJAN JOURNAL
  • 2010-02 The Weil representation and Hecke operators for vector valued modular forms in MATHEMATISCHE ZEITSCHRIFT
  • 2009-09 Faltings heights of CM cycles and derivatives of L-functions in INVENTIONES MATHEMATICAE
  • 2009-09 Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues in MATHEMATISCHE ANNALEN
  • 2008-11 Differential operators for harmonic weak Maass forms and the vanishing of Hecke eigenvalues in MATHEMATISCHE ANNALEN
  • 2008 Elliptic Modular Forms and Their Applications in THE 1-2-3 OF MODULAR FORMS
  • 2008 Hilbert Modular Forms and Their Applications in THE 1-2-3 OF MODULAR FORMS
  • 2006-02 CM-values of Hilbert modular functions in INVENTIONES MATHEMATICAE
  • 2006-02 Hilbert class polynomials and traces of singular moduli in MATHEMATISCHE ANNALEN
  • 2003-10 The arithmetic of Borcherds' exponents in MATHEMATISCHE ANNALEN
  • 2003-03 On Borcherds Products Associated with Lattices of Prime Discriminant in THE RAMANUJAN JOURNAL
  • 2003 On Borcherds Products Associated with Lattices of Prime Discriminant in NUMBER THEORY AND MODULAR FORMS
  • 2002-08 On the Rank of Picard Groups of Modular Varieties Attached to Orthogonal Groups in COMPOSITIO MATHEMATICA
  • 2001-12 Eisenstein series attached to lattices¶and modular forms on orthogonal groups in MANUSCRIPTA MATHEMATICA
  • 1999-10 Borcherds products and Chern classes of Hirzebruch-Zagier divisors in INVENTIONES MATHEMATICAE
  • 1999 Congruence Properties of Values of L-Functions and Applications in TOPICS IN NUMBER THEORY
  • 1999-01 Non-vanishing of scalar products of Fourier-Jacobi coefficients of Siegel cusp forms in MATHEMATISCHE ANNALEN
  • 1998-12 On a Theorem of Vignéras in ABHANDLUNGEN AUS DEM MATHEMATISCHEN SEMINAR DER UNIVERSITÄT HAMBURG
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "affiliation": [
          {
            "affiliation": {
              "id": "https://www.grid.ac/institutes/grid.6546.1", 
              "type": "Organization"
            }, 
            "isCurrent": true, 
            "type": "OrganizationRole"
          }, 
          {
            "id": "https://www.grid.ac/institutes/grid.7700.0", 
            "type": "Organization"
          }
        ], 
        "familyName": "Bruinier", 
        "givenName": "Jan Hendrik", 
        "id": "sg:person.01127662625.41", 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.01127662625.41"
        ], 
        "sdDataset": "persons", 
        "sdDatePublished": "2019-03-07T13:23", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-researchers-20181010/20181011/dim_researchers/base/researchers_1185.json", 
        "type": "Person"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/person.01127662625.41'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/person.01127662625.41'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/person.01127662625.41'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/person.01127662625.41'


     




    Preview window. Press ESC to close (or click here)


    ...