Luis Vega


Ontology type: schema:Person     


Person Info

NAME

Luis

SURNAME

Vega

Publications in SciGraph latest 50 shown

  • 2018-12 On the Relationship Between the One-Corner Problem and the M-Corner Problem for the Vortex Filament Equation in JOURNAL OF NONLINEAR SCIENCE
  • 2016-09 Hardy Uncertainty Principle, Convexity and Parabolic Evolutions in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2016-06 An Isoperimetric-Type Inequality for Electrostatic Shell Interactions for Dirac Operators in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2015-08 The Vortex Filament Equation as a Pseudorandom Generator in ACTA APPLICANDAE MATHEMATICAE
  • 2015-03 Erratum to: Relativistic Hardy Inequalities in Magnetic Fields in JOURNAL OF STATISTICAL PHYSICS
  • 2014-02 Relativistic Hardy Inequalities in Magnetic Fields in JOURNAL OF STATISTICAL PHYSICS
  • 2013-12 Stability of the Self-similar Dynamics of a Vortex Filament in ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS
  • 2013-05 On the stability of self-similar solutions of 1D cubic Schrödinger equations in MATHEMATISCHE ANNALEN
  • 2011-07 Unique Continuation for Schrödinger Evolutions, with Applications to Profiles of Concentration and Traveling Waves in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2009-06 Magnetic virial identities, weak dispersion and Strichartz inequalities in MATHEMATISCHE ANNALEN
  • 2009-03 On the Stability of a Singular Vortex Dynamics in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-08 The Effect of Surface Tension on the Moore Singularity of Vortex Sheet Dynamics in JOURNAL OF NONLINEAR SCIENCE
  • 2008-04 Asymptotic Lower Bounds for a Class of Schrödinger Equations in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2008-01 Energy Concentration and Sommerfeld Condition for Helmholtz Equation with Variable Index at Infinity in GEOMETRIC AND FUNCTIONAL ANALYSIS
  • 2004-11 The Cauchy problem for quasi-linear Schrödinger equations in INVENTIONES MATHEMATICAE
  • 2003-12 On the Interaction of Nearly Parallel Vortex Filaments in COMMUNICATIONS IN MATHEMATICAL PHYSICS
  • 2003-04 Sommerfeld condition for a Liouville equation and concentration of trajectories in BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, NEW SERIES
  • 2000-06 On the Initial Value Problem for the Ishimori System in ANNALES HENRI POINCARÉ
  • 1998-11 Smoothing effects and local existence theory for the generalized nonlinear Schrödinger equations in INVENTIONES MATHEMATICAE
  • 1994 On the Hierarchy of the Generalized KdV Equations in SINGULAR LIMITS OF DISPERSIVE WAVES
  • 1990 The initial value problem for a class of nonlinear dispersive equations in FUNCTIONAL-ANALYTIC METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "familyName": "Vega", 
        "givenName": "Luis", 
        "id": "sg:person.010353550236.52", 
        "identifier": {
          "name": "orcid_id", 
          "type": "PropertyValue", 
          "value": [
            "0000-0001-5086-6345"
          ]
        }, 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353550236.52", 
          "https://orcid.org/0000-0001-5086-6345"
        ], 
        "sdDataset": "persons", 
        "sdDatePublished": "2019-03-07T14:15", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-researchers-20181010/20181011/dim_researchers/base/researchers_2017.json", 
        "type": "Person"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/person.010353550236.52'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/person.010353550236.52'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/person.010353550236.52'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/person.010353550236.52'


     

    This table displays all metadata directly associated to this object as RDF triples.

    16 TRIPLES      10 PREDICATES      12 URIs      7 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:person.010353550236.52 schema:familyName Vega
    2 schema:givenName Luis
    3 schema:identifier N0ccefb8c6bcc4d64989f3c2b6d01c44d
    4 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010353550236.52
    5 https://orcid.org/0000-0001-5086-6345
    6 schema:sdDatePublished 2019-03-07T14:15
    7 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    8 schema:sdPublisher Nc996e9aeae59498e873c0f067cad56c8
    9 sgo:license sg:explorer/license/
    10 sgo:sdDataset persons
    11 rdf:type schema:Person
    12 N0ccefb8c6bcc4d64989f3c2b6d01c44d schema:name orcid_id
    13 schema:value 0000-0001-5086-6345
    14 rdf:type schema:PropertyValue
    15 Nc996e9aeae59498e873c0f067cad56c8 schema:name Springer Nature - SN SciGraph project
    16 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...