Е В Radkevich


Ontology type: schema:Person     


Person Info

NAME

Е В

SURNAME

Radkevich

Publications in SciGraph latest 50 shown

  • 2018-12 On the Nature of Local Equilibrium in the Carleman and Godunov–Sultangazin Equations in JOURNAL OF MATHEMATICAL SCIENCES
  • 2017-07 On the nature of the Rayleigh–Bénard convective instability in DOKLADY MATHEMATICS
  • 2016-10 On Nonviscous Solutions of a Multicomponent Euler System in JOURNAL OF MATHEMATICAL SCIENCES
  • 2015-04 On the Riemann-Hugoniot catastrophe in RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS
  • 2014-11 On the Large-Time Behavior of Solutions to the Cauchy Problem for a 2-dimensional Discrete Kinetic Equation in JOURNAL OF MATHEMATICAL SCIENCES
  • 2014-10 Bifurcations of Critical Rarefaction Waves in JOURNAL OF MATHEMATICAL SCIENCES
  • 2013-03 On Nonexistence of Dissipative Estimates for Discrete Kinetic Equations in JOURNAL OF MATHEMATICAL SCIENCES
  • 2012-11 On discrete kinetic equations in DOKLADY MATHEMATICS
  • 2012-07 The existence of global solutions to the Cauchy problem for discrete kinetic equations (nonperiodic case) in JOURNAL OF MATHEMATICAL SCIENCES
  • 2012-03 The existence of global solutions to the Cauchy problem for discrete kinetic equations. II in JOURNAL OF MATHEMATICAL SCIENCES
  • 2011-12 Structurization of the instability zone and crystallization in JOURNAL OF MATHEMATICAL SCIENCES
  • 2011-12 Olga Arsenjevna Oleinik in JOURNAL OF MATHEMATICAL SCIENCES
  • 2009-04 Equations with nonnegative characteristic form. I in JOURNAL OF MATHEMATICAL SCIENCES
  • 2008-08 Problems of reconstruction of the process of directional solidification in DOKLADY PHYSICS
  • 2008-03 On well-posedness of the Cauchy problem and the mixed problem for some class of hyperbolic systems and equations with constant coefficients and variable multiplicity of characteristics in JOURNAL OF MATHEMATICAL SCIENCES
  • 2007-02 On the large-time behavior of solutions to systems of hyperbolic equations with relaxation in DOKLADY MATHEMATICS
  • 2006-05 On the properties of the dispersion equations of moment systems for the Fokker-Planck equation in DIFFERENTIAL EQUATIONS
  • 2005-06 On Hyperbolic Pencils for the Grad Moment Systems in Nonequilibrium Thermodynamics in JOURNAL OF MATHEMATICAL SCIENCES
  • 2004-08 Central manifold and the problems of the Chapman-Enskog projection for the Boltzmann-Peierls equation in DOKLADY PHYSICS
  • 2004-03 Properties of the representation of the Fokker-Planck equation in the basis of Hermite functions in DOKLADY PHYSICS
  • 2003-03 On the Global Stability of Solutions of Moment Systems in Nonequilibrium Thermodynamics in MATHEMATICAL NOTES
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "familyName": "Radkevich", 
        "givenName": "\u0415 \u0412", 
        "id": "sg:person.010212007350.31", 
        "identifier": {
          "name": "orcid_id", 
          "type": "PropertyValue", 
          "value": [
            "0000-0001-7904-4476"
          ]
        }, 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31", 
          "https://orcid.org/0000-0001-7904-4476"
        ], 
        "sdDataset": "persons", 
        "sdDatePublished": "2019-03-07T14:11", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-researchers-20181010/20181011/dim_researchers/base/researchers_1951.json", 
        "type": "Person"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/person.010212007350.31'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/person.010212007350.31'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/person.010212007350.31'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/person.010212007350.31'


     

    This table displays all metadata directly associated to this object as RDF triples.

    16 TRIPLES      10 PREDICATES      12 URIs      7 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:person.010212007350.31 schema:familyName Radkevich
    2 schema:givenName Е В
    3 schema:identifier Nfd6adecdf3284644a18087b3323d7d29
    4 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010212007350.31
    5 https://orcid.org/0000-0001-7904-4476
    6 schema:sdDatePublished 2019-03-07T14:11
    7 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    8 schema:sdPublisher N4be2aa5c00b8448f8ec1dc69a58c295c
    9 sgo:license sg:explorer/license/
    10 sgo:sdDataset persons
    11 rdf:type schema:Person
    12 N4be2aa5c00b8448f8ec1dc69a58c295c schema:name Springer Nature - SN SciGraph project
    13 rdf:type schema:Organization
    14 Nfd6adecdf3284644a18087b3323d7d29 schema:name orcid_id
    15 schema:value 0000-0001-7904-4476
    16 rdf:type schema:PropertyValue
     




    Preview window. Press ESC to close (or click here)


    ...