Jörg Eschmeier


Ontology type: schema:Person     


Person Info

NAME

Jörg

SURNAME

Eschmeier

Publications in SciGraph latest 50 shown

  • 2018-10 Multivariable Bergman Shifts and Wold Decompositions in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 2017 Funktionentheorie mehrerer Veränderlicher in NONE
  • 2015-10 Dual Toeplitz Operators on the Sphere Via Spherical Isometries in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 2014 On the Maximal Ideal Space of a Sarason-Type Algebra on the Unit Ball in THE CORONA PROBLEM
  • 2012 Spectral Inclusion Theorems in MATHEMATICAL METHODS IN SYSTEMS, OPTIMIZATION, AND CONTROL
  • 2011-02 Essential Normality of Homogeneous Submodules in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 2010-07 Closed Range Property for Holomorphic Semi-Fredholm Functions in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 2009-05 Grothendieck’s comparison theorem and multivariable Fredholm theory in ARCHIV DER MATHEMATIK
  • 2007-10 Reflexivity for Subnormal Systems With Dominating Spectrum in Product Domains in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 2007-09 Samuel multiplicity and Fredholm theory in MATHEMATISCHE ANNALEN
  • 2006-08 On CNC commuting contractive tuples in PROCEEDINGS OF THE INDIAN ACADEMY OF SCIENCES. SECTION A
  • 2005-09 Characteristic Function of a Pure Commuting Contractive Tuple in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 2002-12 Invariant subspaces and localizable spectrum in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 2001 Some remarks on spherical isometries in SYSTEMS, APPROXIMATION, SINGULAR INTEGRAL OPERATORS, AND RELATED TOPICS
  • 2001 On the structure of spherical contractions in RECENT ADVANCES IN OPERATOR THEORY AND RELATED TOPICS
  • 1994-01 Representations ofH∞(G) and invariant subspaces in MATHEMATISCHE ANNALEN
  • 1990 Multiplication Operators on Bergman Spaces are Reflexive in LINEAR OPERATORS IN FUNCTION SPACES
  • 1989-06 Invariant subspaces for subscalar operators in ARCHIV DER MATHEMATIK
  • 1988-03 A decomposable Hilbert space operator which is not strongly decomposable in INTEGRAL EQUATIONS AND OPERATOR THEORY
  • 1986 Some Topics in the Theory of Decomposable Operators in ADVANCES IN INVARIANT SUBSPACES AND OTHER RESULTS OF OPERATOR THEORY
  • 1985-02 Spectral decompositions and decomposable multipliers in MANUSCRIPTA MATHEMATICA
  • 1983-03 Equivalence of decomposability and 2-decomposability for several commuting operators in MATHEMATISCHE ANNALEN
  • 1982-02 Local properties of Taylor's analytic functional calculus in INVENTIONES MATHEMATICAE
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "familyName": "Eschmeier", 
        "givenName": "J\u00f6rg", 
        "id": "sg:person.010071575021.11", 
        "identifier": {
          "name": "orcid_id", 
          "type": "PropertyValue", 
          "value": [
            "0000-0003-3949-6333"
          ]
        }, 
        "sameAs": [
          "https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010071575021.11", 
          "https://orcid.org/0000-0003-3949-6333"
        ], 
        "sdDataset": "persons", 
        "sdDatePublished": "2019-03-07T13:37", 
        "sdLicense": "https://scigraph.springernature.com/explorer/license/", 
        "sdPublisher": {
          "name": "Springer Nature - SN SciGraph project", 
          "type": "Organization"
        }, 
        "sdSource": "s3://com-uberresearch-data-dimensions-researchers-20181010/20181011/dim_researchers/base/researchers_1401.json", 
        "type": "Person"
      }
    ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/person.010071575021.11'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/person.010071575021.11'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/person.010071575021.11'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/person.010071575021.11'


     

    This table displays all metadata directly associated to this object as RDF triples.

    16 TRIPLES      10 PREDICATES      12 URIs      7 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:person.010071575021.11 schema:familyName Eschmeier
    2 schema:givenName Jörg
    3 schema:identifier N95fdf77c297e496a9411a3aa57905383
    4 schema:sameAs https://app.dimensions.ai/discover/publication?and_facet_researcher=ur.010071575021.11
    5 https://orcid.org/0000-0003-3949-6333
    6 schema:sdDatePublished 2019-03-07T13:37
    7 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    8 schema:sdPublisher Ne60245ed6f4047779b30a0f08686e9e2
    9 sgo:license sg:explorer/license/
    10 sgo:sdDataset persons
    11 rdf:type schema:Person
    12 N95fdf77c297e496a9411a3aa57905383 schema:name orcid_id
    13 schema:value 0000-0003-3949-6333
    14 rdf:type schema:PropertyValue
    15 Ne60245ed6f4047779b30a0f08686e9e2 schema:name Springer Nature - SN SciGraph project
    16 rdf:type schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...