Image Demosaicing


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

NOWOZIN, REINHARD SEBASTIAN BERNHARD , KHASHABI, Danyal , JANCSARY, Jeremy Martin , LINDBLOOM, Bruce Justin , FITZGIBBON, ANDREW WILLIAM

ABSTRACT

A trained machine learning component is used to carry out demosaicing optionally in combination with denoising. In some examples the trained machine learning system comprises a cascade of trained regression tree fields. In some examples the machine learning component has been trained using pairs of mosaiced and demosaiced images where the demosaiced images have been obtained by downscaling natural color digital images. For example, the mosaiced images are obtained from the demosaiced images by subsampling according to one of a variety of color filter array patterns. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "NOWOZIN, REINHARD SEBASTIAN BERNHARD", 
        "type": "Person"
      }, 
      {
        "name": "KHASHABI, Danyal", 
        "type": "Person"
      }, 
      {
        "name": "JANCSARY, Jeremy Martin", 
        "type": "Person"
      }, 
      {
        "name": "LINDBLOOM, Bruce Justin", 
        "type": "Person"
      }, 
      {
        "name": "FITZGIBBON, ANDREW WILLIAM", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1007/978-1-4614-0757-7_2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048074787", 
          "https://doi.org/10.1007/978-1-4614-0757-7_2"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tip.2014.2359774", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061644115"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tpami.2005.76", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061742931"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/icip.2012.6467472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1093954926"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

A trained machine learning component is used to carry out demosaicing optionally in combination with denoising. In some examples the trained machine learning system comprises a cascade of trained regression tree fields. In some examples the machine learning component has been trained using pairs of mosaiced and demosaiced images where the demosaiced images have been obtained by downscaling natural color digital images. For example, the mosaiced images are obtained from the demosaiced images by subsampling according to one of a variety of color filter array patterns.

", "id": "sg:patent.WO-2015112652-A1", "keywords": [ "machine", "component", "denoising", "cascade", "regression tree", "pair", "digital image", "subsampling", "pattern" ], "name": "IMAGE DEMOSAICING", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.419815.0", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/WO-2015112652-A1" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:36", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_c3e5ed81.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.WO-2015112652-A1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.WO-2015112652-A1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.WO-2015112652-A1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.WO-2015112652-A1'


 

This table displays all metadata directly associated to this object as RDF triples.

59 TRIPLES      14 PREDICATES      26 URIs      16 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.WO-2015112652-A1 schema:about anzsrc-for:2746
2 schema:author Nbac2fe13aacd468c8ec5447c2be16e4a
3 schema:citation sg:pub.10.1007/978-1-4614-0757-7_2
4 https://doi.org/10.1109/icip.2012.6467472
5 https://doi.org/10.1109/tip.2014.2359774
6 https://doi.org/10.1109/tpami.2005.76
7 schema:description <p num="0000">A trained machine learning component is used to carry out demosaicing optionally in combination with denoising. In some examples the trained machine learning system comprises a cascade of trained regression tree fields. In some examples the machine learning component has been trained using pairs of mosaiced and demosaiced images where the demosaiced images have been obtained by downscaling natural color digital images. For example, the mosaiced images are obtained from the demosaiced images by subsampling according to one of a variety of color filter array patterns.</p>
8 schema:keywords cascade
9 component
10 denoising
11 digital image
12 machine
13 pair
14 pattern
15 regression tree
16 subsampling
17 schema:name IMAGE DEMOSAICING
18 schema:recipient https://www.grid.ac/institutes/grid.419815.0
19 schema:sameAs https://app.dimensions.ai/details/patent/WO-2015112652-A1
20 schema:sdDatePublished 2019-03-07T15:36
21 schema:sdLicense https://scigraph.springernature.com/explorer/license/
22 schema:sdPublisher Nae9f2af3f22641059d62fb0401446592
23 sgo:license sg:explorer/license/
24 sgo:sdDataset patents
25 rdf:type sgo:Patent
26 N1ad04d0631ad491797b6c42302494a5b schema:name NOWOZIN, REINHARD SEBASTIAN BERNHARD
27 rdf:type schema:Person
28 N1f1893564f674734bc03ae4e2f68357e schema:name JANCSARY, Jeremy Martin
29 rdf:type schema:Person
30 N3fe1ba4aef85489e8caf3e233ed15ffd schema:name FITZGIBBON, ANDREW WILLIAM
31 rdf:type schema:Person
32 N867d2d4323b244459971f5eacdd89175 rdf:first N1f1893564f674734bc03ae4e2f68357e
33 rdf:rest N9d43d035383244d1956d921cf778e7d2
34 N8dec69462fb34fe9aba59163648033a5 schema:name KHASHABI, Danyal
35 rdf:type schema:Person
36 N9d43d035383244d1956d921cf778e7d2 rdf:first Nbe8e0146282845edbb3b8c822c4b89f7
37 rdf:rest Nc52cdb2650f0461bb15ee1855d4750d8
38 Nae9f2af3f22641059d62fb0401446592 schema:name Springer Nature - SN SciGraph project
39 rdf:type schema:Organization
40 Nb26f87643b9f489690338f357d213a79 rdf:first N8dec69462fb34fe9aba59163648033a5
41 rdf:rest N867d2d4323b244459971f5eacdd89175
42 Nbac2fe13aacd468c8ec5447c2be16e4a rdf:first N1ad04d0631ad491797b6c42302494a5b
43 rdf:rest Nb26f87643b9f489690338f357d213a79
44 Nbe8e0146282845edbb3b8c822c4b89f7 schema:name LINDBLOOM, Bruce Justin
45 rdf:type schema:Person
46 Nc52cdb2650f0461bb15ee1855d4750d8 rdf:first N3fe1ba4aef85489e8caf3e233ed15ffd
47 rdf:rest rdf:nil
48 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
49 rdf:type schema:DefinedTerm
50 sg:pub.10.1007/978-1-4614-0757-7_2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048074787
51 https://doi.org/10.1007/978-1-4614-0757-7_2
52 rdf:type schema:CreativeWork
53 https://doi.org/10.1109/icip.2012.6467472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1093954926
54 rdf:type schema:CreativeWork
55 https://doi.org/10.1109/tip.2014.2359774 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061644115
56 rdf:type schema:CreativeWork
57 https://doi.org/10.1109/tpami.2005.76 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742931
58 rdf:type schema:CreativeWork
59 https://www.grid.ac/institutes/grid.419815.0 schema:Organization
 




Preview window. Press ESC to close (or click here)


...