Mrna-Based Gene Expression For Personalizing Patient Cancer Therapy With An Mdm2 Antagonist


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

CHEN, GONG , DANGL, MARKUS , GEHO, DAVID , NICHOLS, Gwen , ZHONG, HUA

ABSTRACT

The present application discloses a method to predict responsiveness of a patient, with cancer, to treatment with an MDM2 antagonist of formulae I, II and III as disclosed herein, said method comprising measuring m RNA expression levels of at least MDM2, preferably of a four gene panel comprising MDM2, XPC, BBC3 and CDKN2A, as a biomarker for predicting the response. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/3142", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }, 
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2620", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "CHEN, GONG", 
        "type": "Person"
      }, 
      {
        "name": "DANGL, MARKUS", 
        "type": "Person"
      }, 
      {
        "name": "GEHO, DAVID", 
        "type": "Person"
      }, 
      {
        "name": "NICHOLS, Gwen", 
        "type": "Person"
      }, 
      {
        "name": "ZHONG, HUA", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1002/ijc.22643", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007041729"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008312342", 
          "https://doi.org/10.1038/nature11005"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/bioinformatics/19.2.185", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011853799"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2007-09-112698", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011960178"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1470-2045(12)70474-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1022323794"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35042675", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023763406", 
          "https://doi.org/10.1038/35042675"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-05-3832", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024540073"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gad.1941710", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025217201"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/leu.2011.28", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030682965", 
          "https://doi.org/10.1038/leu.2011.28"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/pros.10290", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033420804"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1158/0008-5472.can-12-2807", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1033756771"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature11003", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1036060000", 
          "https://doi.org/10.1038/nature11003"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/cncr.27837", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039958369"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1146/annurev.pharmtox.48.113006.094723", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040792273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1182/blood-2005-02-0553", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1041354926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.20495", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047721109"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.c600147200", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048381533"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.molmed.2006.11.002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1051001032"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ml4000657", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1056211590"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1092472", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062449189"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

The present application discloses a method to predict responsiveness of a patient, with cancer, to treatment with an MDM2 antagonist of formulae I, II and III as disclosed herein, said method comprising measuring m RNA expression levels of at least MDM2, preferably of a four gene panel comprising MDM2, XPC, BBC3 and CDKN2A, as a biomarker for predicting the response.

", "id": "sg:patent.WO-2015000945-A1", "keywords": [ "gene expression", "present application", "method", "responsiveness", "patient", "Neoplasm", "antagonist", "formula", "expression level", "MDM2", "panel", "XPC", "CDKN2A", "biomarker" ], "name": "MRNA-BASED GENE EXPRESSION FOR PERSONALIZING PATIENT CANCER THERAPY WITH AN MDM2 ANTAGONIST", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.417570.0", "type": "Organization" }, { "id": "https://www.grid.ac/institutes/grid.418158.1", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/WO-2015000945-A1" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:35", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_b670b59c.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.WO-2015000945-A1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.WO-2015000945-A1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.WO-2015000945-A1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.WO-2015000945-A1'


 

This table displays all metadata directly associated to this object as RDF triples.

120 TRIPLES      14 PREDICATES      49 URIs      21 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.WO-2015000945-A1 schema:about anzsrc-for:2620
2 anzsrc-for:3142
3 schema:author N96184a56ec0d460a89dfa82e388364c3
4 schema:citation sg:pub.10.1038/35042675
5 sg:pub.10.1038/leu.2011.28
6 sg:pub.10.1038/nature11003
7 sg:pub.10.1038/nature11005
8 https://doi.org/10.1002/cncr.27837
9 https://doi.org/10.1002/humu.20495
10 https://doi.org/10.1002/ijc.22643
11 https://doi.org/10.1002/pros.10290
12 https://doi.org/10.1016/j.molmed.2006.11.002
13 https://doi.org/10.1016/s1470-2045(12)70474-6
14 https://doi.org/10.1021/ml4000657
15 https://doi.org/10.1074/jbc.c600147200
16 https://doi.org/10.1093/bioinformatics/19.2.185
17 https://doi.org/10.1101/gad.1941710
18 https://doi.org/10.1126/science.1092472
19 https://doi.org/10.1146/annurev.pharmtox.48.113006.094723
20 https://doi.org/10.1158/0008-5472.can-05-3832
21 https://doi.org/10.1158/0008-5472.can-12-2807
22 https://doi.org/10.1182/blood-2005-02-0553
23 https://doi.org/10.1182/blood-2007-09-112698
24 schema:description <p>The present application discloses a method to predict responsiveness of a patient, with cancer, to treatment with an MDM2 antagonist of formulae I, II and III as disclosed herein, said method comprising measuring m RNA expression levels of at least MDM2, preferably of a four gene panel comprising MDM2, XPC, BBC3 and CDKN2A, as a biomarker for predicting the response.</p>
25 schema:keywords CDKN2A
26 MDM2
27 Neoplasm
28 XPC
29 antagonist
30 biomarker
31 expression level
32 formula
33 gene expression
34 method
35 panel
36 patient
37 present application
38 responsiveness
39 schema:name MRNA-BASED GENE EXPRESSION FOR PERSONALIZING PATIENT CANCER THERAPY WITH AN MDM2 ANTAGONIST
40 schema:recipient https://www.grid.ac/institutes/grid.417570.0
41 https://www.grid.ac/institutes/grid.418158.1
42 schema:sameAs https://app.dimensions.ai/details/patent/WO-2015000945-A1
43 schema:sdDatePublished 2019-03-07T15:35
44 schema:sdLicense https://scigraph.springernature.com/explorer/license/
45 schema:sdPublisher N342400bd7110439b896b2b1790d52a0e
46 sgo:license sg:explorer/license/
47 sgo:sdDataset patents
48 rdf:type sgo:Patent
49 N1ac1eac95acc47179ff3811ac3cd2687 schema:name NICHOLS, Gwen
50 rdf:type schema:Person
51 N342400bd7110439b896b2b1790d52a0e schema:name Springer Nature - SN SciGraph project
52 rdf:type schema:Organization
53 N3e6e848e15ad4bcfb97629853c2aab7c rdf:first Nd71e6f43180f40a6b860ed8ee3773fb6
54 rdf:rest rdf:nil
55 N4032e71d61104171a0ba512b33328a1c rdf:first Nd44b641ff15648c0a2b29b600b2bc198
56 rdf:rest Nd3855700eb2644c683f30e7b37ed35dc
57 N8c5c925c11dd4fb187369ba2c0899ec4 schema:name CHEN, GONG
58 rdf:type schema:Person
59 N8fcef30c2d57400db35efff9a8683711 schema:name GEHO, DAVID
60 rdf:type schema:Person
61 N96184a56ec0d460a89dfa82e388364c3 rdf:first N8c5c925c11dd4fb187369ba2c0899ec4
62 rdf:rest N4032e71d61104171a0ba512b33328a1c
63 Nc1585221e3a744f1b704173d375dbe04 rdf:first N1ac1eac95acc47179ff3811ac3cd2687
64 rdf:rest N3e6e848e15ad4bcfb97629853c2aab7c
65 Nd3855700eb2644c683f30e7b37ed35dc rdf:first N8fcef30c2d57400db35efff9a8683711
66 rdf:rest Nc1585221e3a744f1b704173d375dbe04
67 Nd44b641ff15648c0a2b29b600b2bc198 schema:name DANGL, MARKUS
68 rdf:type schema:Person
69 Nd71e6f43180f40a6b860ed8ee3773fb6 schema:name ZHONG, HUA
70 rdf:type schema:Person
71 anzsrc-for:2620 schema:inDefinedTermSet anzsrc-for:
72 rdf:type schema:DefinedTerm
73 anzsrc-for:3142 schema:inDefinedTermSet anzsrc-for:
74 rdf:type schema:DefinedTerm
75 sg:pub.10.1038/35042675 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023763406
76 https://doi.org/10.1038/35042675
77 rdf:type schema:CreativeWork
78 sg:pub.10.1038/leu.2011.28 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030682965
79 https://doi.org/10.1038/leu.2011.28
80 rdf:type schema:CreativeWork
81 sg:pub.10.1038/nature11003 schema:sameAs https://app.dimensions.ai/details/publication/pub.1036060000
82 https://doi.org/10.1038/nature11003
83 rdf:type schema:CreativeWork
84 sg:pub.10.1038/nature11005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008312342
85 https://doi.org/10.1038/nature11005
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/cncr.27837 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039958369
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1002/humu.20495 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047721109
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/ijc.22643 schema:sameAs https://app.dimensions.ai/details/publication/pub.1007041729
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1002/pros.10290 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033420804
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/j.molmed.2006.11.002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051001032
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/s1470-2045(12)70474-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1022323794
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1021/ml4000657 schema:sameAs https://app.dimensions.ai/details/publication/pub.1056211590
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1074/jbc.c600147200 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048381533
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1093/bioinformatics/19.2.185 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011853799
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1101/gad.1941710 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025217201
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1126/science.1092472 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062449189
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1146/annurev.pharmtox.48.113006.094723 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040792273
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1158/0008-5472.can-05-3832 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024540073
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1158/0008-5472.can-12-2807 schema:sameAs https://app.dimensions.ai/details/publication/pub.1033756771
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1182/blood-2005-02-0553 schema:sameAs https://app.dimensions.ai/details/publication/pub.1041354926
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1182/blood-2007-09-112698 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011960178
118 rdf:type schema:CreativeWork
119 https://www.grid.ac/institutes/grid.417570.0 schema:Organization
120 https://www.grid.ac/institutes/grid.418158.1 schema:Organization
 




Preview window. Press ESC to close (or click here)


...