Method And Apparatus For Learning-Enhanced Altas-Based Auto-Segmentation


Ontology type: sgo:Patent     


Patent Info

DATE

2014-09-04T00:00

AUTHORS

HAN, Xiao

ABSTRACT

Disclosed herein are techniques for enhancing the accuracy of atlas-based auto-segmentation (ABAS) using an automated structure classifier that was trained using a machine learning algorithm. Also disclosed is a technique for training the automated structure classifier using atlas data applied to the machine learning algorithm.

Related SciGraph Publications

  • 2001-10. Random Forests in MACHINE LEARNING
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2746", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "HAN, Xiao", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2003.11.010", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1021881711"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1023/a:1010933404324", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024739340", 
              "https://doi.org/10.1023/a:1010933404324"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1118/1.2842076", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025357954"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/0031-3203(95)00067-4", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1035783933"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1016/j.neuroimage.2006.05.061", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1047002285"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tmi.2004.828354", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061694590"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1109/tpami.2002.1017623", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1061742396"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2014-09-04T00:00", 
        "description": "

    Disclosed herein are techniques for enhancing the accuracy of atlas-based auto-segmentation (ABAS) using an automated structure classifier that was trained using a machine learning algorithm. Also disclosed is a technique for training the automated structure classifier using atlas data applied to the machine learning algorithm.

    ", "id": "sg:patent.WO-2014133756-A2", "keywords": [ "segmentation", "technique", "accuracy", "classifier", "machine", "algorithm", "atlas" ], "name": "METHOD AND APPARATUS FOR LEARNING-ENHANCED ALTAS-BASED AUTO-SEGMENTATION", "sameAs": [ "https://app.dimensions.ai/details/patent/WO-2014133756-A2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:13", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00831.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.WO-2014133756-A2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.WO-2014133756-A2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.WO-2014133756-A2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.WO-2014133756-A2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    49 TRIPLES      14 PREDICATES      27 URIs      15 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.WO-2014133756-A2 schema:about anzsrc-for:2746
    2 schema:author Nd468e9f6dbc44189b85b91820505c4b6
    3 schema:citation sg:pub.10.1023/a:1010933404324
    4 https://doi.org/10.1016/0031-3203(95)00067-4
    5 https://doi.org/10.1016/j.neuroimage.2003.11.010
    6 https://doi.org/10.1016/j.neuroimage.2006.05.061
    7 https://doi.org/10.1109/tmi.2004.828354
    8 https://doi.org/10.1109/tpami.2002.1017623
    9 https://doi.org/10.1118/1.2842076
    10 schema:datePublished 2014-09-04T00:00
    11 schema:description <p>Disclosed herein are techniques for enhancing the accuracy of atlas-based auto-segmentation (ABAS) using an automated structure classifier that was trained using a machine learning algorithm. Also disclosed is a technique for training the automated structure classifier using atlas data applied to the machine learning algorithm.</p>
    12 schema:keywords accuracy
    13 algorithm
    14 atlas
    15 classifier
    16 machine
    17 segmentation
    18 technique
    19 schema:name METHOD AND APPARATUS FOR LEARNING-ENHANCED ALTAS-BASED AUTO-SEGMENTATION
    20 schema:sameAs https://app.dimensions.ai/details/patent/WO-2014133756-A2
    21 schema:sdDatePublished 2019-04-18T10:13
    22 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    23 schema:sdPublisher N628f24cdb42b4d9dbe3aad0fdfc1ed57
    24 sgo:license sg:explorer/license/
    25 sgo:sdDataset patents
    26 rdf:type sgo:Patent
    27 N0f808b06750a41229aa75081b1e2fd9d schema:name HAN, Xiao
    28 rdf:type schema:Person
    29 N628f24cdb42b4d9dbe3aad0fdfc1ed57 schema:name Springer Nature - SN SciGraph project
    30 rdf:type schema:Organization
    31 Nd468e9f6dbc44189b85b91820505c4b6 rdf:first N0f808b06750a41229aa75081b1e2fd9d
    32 rdf:rest rdf:nil
    33 anzsrc-for:2746 schema:inDefinedTermSet anzsrc-for:
    34 rdf:type schema:DefinedTerm
    35 sg:pub.10.1023/a:1010933404324 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024739340
    36 https://doi.org/10.1023/a:1010933404324
    37 rdf:type schema:CreativeWork
    38 https://doi.org/10.1016/0031-3203(95)00067-4 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035783933
    39 rdf:type schema:CreativeWork
    40 https://doi.org/10.1016/j.neuroimage.2003.11.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021881711
    41 rdf:type schema:CreativeWork
    42 https://doi.org/10.1016/j.neuroimage.2006.05.061 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047002285
    43 rdf:type schema:CreativeWork
    44 https://doi.org/10.1109/tmi.2004.828354 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061694590
    45 rdf:type schema:CreativeWork
    46 https://doi.org/10.1109/tpami.2002.1017623 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061742396
    47 rdf:type schema:CreativeWork
    48 https://doi.org/10.1118/1.2842076 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025357954
    49 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...