A Method For Identifying Compounds Of Therapeutic Interest


Ontology type: sgo:Patent     


Patent Info

DATE

2014-01-03T00:00

AUTHORS

LAWSON, ALASTAIR DAVID GRIFFITHS , HENRY, ALISTAIR JAMES

ABSTRACT

The present invention relates to an improved method for drug discovery. In particular the present invention provides a method of identifying compounds capable of binding to a functional conformational state of a protein of interest or protein fragment thereof, said method comprising the steps of: (a) Binding a function-modifying antibody to the target protein of interest or a fragment thereof to provide an antibody-constrained protein or fragment, wherein the antibody has binding kinetics with the protein or fragment which are such that it has a low dissociation rate constant, (b) Providing a test compound which has a low molecular weight, (c) Evaluating whether the test compound of step b) binds the antibody constrained protein or fragment, and (d) Select a compound from step c) based on the ability to bind to the protein or fragment thereof. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2581", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "LAWSON, ALASTAIR DAVID GRIFFITHS", 
        "type": "Person"
      }, 
      {
        "name": "HENRY, ALISTAIR JAMES", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1107/s0907444910007493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000235100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444910007493", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000235100"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0180935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002210386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1042/bst0180935", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002210386"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s1074-7613(00)00037-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002951401"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nri2273", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006625763", 
          "https://doi.org/10.1038/nri2273"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0169-409x(00)00129-0", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1006677292"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-065x.2009.00833.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007192678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1600-065x.2009.00833.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007192678"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/jcc.20084", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008225564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0161-5890(86)90005-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008839076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0161-5890(86)90005-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008839076"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1365-2222.2005.02191.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009247333"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.1747-0285.2007.00471.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009830802"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444904010145", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1011012411"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ab.2012.09.010", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1015643358"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2009.08.012", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018195234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909042073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018458004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444909042073", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1018458004"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2011.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020326812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2011.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020326812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.ymeth.2011.07.005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020326812"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1074/jbc.m111.331967", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024240895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444994003112", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025573949"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-2836(91)90937-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030390154"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0021889808006985", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032551326"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1107/s0907444911001314", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032555428"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35018500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040384935", 
          "https://doi.org/10.1038/35018500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35018500", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040384935", 
          "https://doi.org/10.1038/35018500"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040452458", 
          "https://doi.org/10.1038/nrd1343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nrd1343", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040452458", 
          "https://doi.org/10.1038/nrd1343"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2007.05.022", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042204379"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/wcms.31", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044158128"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046652146", 
          "https://doi.org/10.1038/ni811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/ni811", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046652146", 
          "https://doi.org/10.1038/ni811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0903805106", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047360880"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nsmb.2044", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047835195", 
          "https://doi.org/10.1038/nsmb.2044"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.jmb.2003.12.068", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050921681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00044a023", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055158564"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/bi00102a002", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055160948"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2174/1381612043384303", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1069165213"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2014-01-03T00:00", 
    "description": "

The present invention relates to an improved method for drug discovery. In particular the present invention provides a method of identifying compounds capable of binding to a functional conformational state of a protein of interest or protein fragment thereof, said method comprising the steps of: (a) Binding a function-modifying antibody to the target protein of interest or a fragment thereof to provide an antibody-constrained protein or fragment, wherein the antibody has binding kinetics with the protein or fragment which are such that it has a low dissociation rate constant, (b) Providing a test compound which has a low molecular weight, (c) Evaluating whether the test compound of step b) binds the antibody constrained protein or fragment, and (d) Select a compound from step c) based on the ability to bind to the protein or fragment thereof.

", "id": "sg:patent.WO-2014001557-A1", "keywords": [ "therapeutic interest", "invention", "improved method", "drug discovery", "method", "compound", "binding", "conformational state", "protein", "protein fragment", "antibody", "target protein", "fragment", "wherein", "binding kinetics", "dissociation rate constant", "low molecular weight" ], "name": "A METHOD FOR IDENTIFYING COMPOUNDS OF THERAPEUTIC INTEREST", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.421932.f", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/WO-2014001557-A1" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:12", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00714.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.WO-2014001557-A1'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.WO-2014001557-A1'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.WO-2014001557-A1'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.WO-2014001557-A1'


 

This table displays all metadata directly associated to this object as RDF triples.

141 TRIPLES      15 PREDICATES      62 URIs      25 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.WO-2014001557-A1 schema:about anzsrc-for:2581
2 schema:author N53a6fde9312f49f992f645f2c1b9cf04
3 schema:citation sg:pub.10.1038/35018500
4 sg:pub.10.1038/ni811
5 sg:pub.10.1038/nrd1343
6 sg:pub.10.1038/nri2273
7 sg:pub.10.1038/nsmb.2044
8 https://doi.org/10.1002/jcc.20084
9 https://doi.org/10.1002/wcms.31
10 https://doi.org/10.1016/0022-2836(91)90937-2
11 https://doi.org/10.1016/0161-5890(86)90005-2
12 https://doi.org/10.1016/j.ab.2012.09.010
13 https://doi.org/10.1016/j.jmb.2003.12.068
14 https://doi.org/10.1016/j.jmb.2007.05.022
15 https://doi.org/10.1016/j.jmb.2009.08.012
16 https://doi.org/10.1016/j.ymeth.2011.07.005
17 https://doi.org/10.1016/s0169-409x(00)00129-0
18 https://doi.org/10.1016/s1074-7613(00)00037-6
19 https://doi.org/10.1021/bi00044a023
20 https://doi.org/10.1021/bi00102a002
21 https://doi.org/10.1042/bst0180935
22 https://doi.org/10.1073/pnas.0903805106
23 https://doi.org/10.1074/jbc.m111.331967
24 https://doi.org/10.1107/s0021889808006985
25 https://doi.org/10.1107/s0907444904010145
26 https://doi.org/10.1107/s0907444909042073
27 https://doi.org/10.1107/s0907444910007493
28 https://doi.org/10.1107/s0907444911001314
29 https://doi.org/10.1107/s0907444994003112
30 https://doi.org/10.1111/j.1365-2222.2005.02191.x
31 https://doi.org/10.1111/j.1600-065x.2009.00833.x
32 https://doi.org/10.1111/j.1747-0285.2007.00471.x
33 https://doi.org/10.2174/1381612043384303
34 schema:datePublished 2014-01-03T00:00
35 schema:description <p>The present invention relates to an improved method for drug discovery. In particular the present invention provides a method of identifying compounds capable of binding to a functional conformational state of a protein of interest or protein fragment thereof, said method comprising the steps of: (a) Binding a function-modifying antibody to the target protein of interest or a fragment thereof to provide an antibody-constrained protein or fragment, wherein the antibody has binding kinetics with the protein or fragment which are such that it has a low dissociation rate constant, (b) Providing a test compound which has a low molecular weight, (c) Evaluating whether the test compound of step b) binds the antibody constrained protein or fragment, and (d) Select a compound from step c) based on the ability to bind to the protein or fragment thereof.</p>
36 schema:keywords antibody
37 binding
38 binding kinetics
39 compound
40 conformational state
41 dissociation rate constant
42 drug discovery
43 fragment
44 improved method
45 invention
46 low molecular weight
47 method
48 protein
49 protein fragment
50 target protein
51 therapeutic interest
52 wherein
53 schema:name A METHOD FOR IDENTIFYING COMPOUNDS OF THERAPEUTIC INTEREST
54 schema:recipient https://www.grid.ac/institutes/grid.421932.f
55 schema:sameAs https://app.dimensions.ai/details/patent/WO-2014001557-A1
56 schema:sdDatePublished 2019-04-18T10:12
57 schema:sdLicense https://scigraph.springernature.com/explorer/license/
58 schema:sdPublisher N85663ae3ed90468ca266277a51b84eb1
59 sgo:license sg:explorer/license/
60 sgo:sdDataset patents
61 rdf:type sgo:Patent
62 N2abbce2026e5485094e634cccdb68e9d schema:name HENRY, ALISTAIR JAMES
63 rdf:type schema:Person
64 N53a6fde9312f49f992f645f2c1b9cf04 rdf:first N97bbf9dfb0454bebbb52fd52623ceb78
65 rdf:rest N8b87debb0e7649389198b7929fabe2f7
66 N85663ae3ed90468ca266277a51b84eb1 schema:name Springer Nature - SN SciGraph project
67 rdf:type schema:Organization
68 N8b87debb0e7649389198b7929fabe2f7 rdf:first N2abbce2026e5485094e634cccdb68e9d
69 rdf:rest rdf:nil
70 N97bbf9dfb0454bebbb52fd52623ceb78 schema:name LAWSON, ALASTAIR DAVID GRIFFITHS
71 rdf:type schema:Person
72 anzsrc-for:2581 schema:inDefinedTermSet anzsrc-for:
73 rdf:type schema:DefinedTerm
74 sg:pub.10.1038/35018500 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040384935
75 https://doi.org/10.1038/35018500
76 rdf:type schema:CreativeWork
77 sg:pub.10.1038/ni811 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046652146
78 https://doi.org/10.1038/ni811
79 rdf:type schema:CreativeWork
80 sg:pub.10.1038/nrd1343 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040452458
81 https://doi.org/10.1038/nrd1343
82 rdf:type schema:CreativeWork
83 sg:pub.10.1038/nri2273 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006625763
84 https://doi.org/10.1038/nri2273
85 rdf:type schema:CreativeWork
86 sg:pub.10.1038/nsmb.2044 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047835195
87 https://doi.org/10.1038/nsmb.2044
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1002/jcc.20084 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008225564
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1002/wcms.31 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044158128
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0022-2836(91)90937-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030390154
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0161-5890(86)90005-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008839076
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.ab.2012.09.010 schema:sameAs https://app.dimensions.ai/details/publication/pub.1015643358
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1016/j.jmb.2003.12.068 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050921681
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1016/j.jmb.2007.05.022 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042204379
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1016/j.jmb.2009.08.012 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018195234
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1016/j.ymeth.2011.07.005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020326812
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1016/s0169-409x(00)00129-0 schema:sameAs https://app.dimensions.ai/details/publication/pub.1006677292
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1016/s1074-7613(00)00037-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002951401
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1021/bi00044a023 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055158564
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1021/bi00102a002 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055160948
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1042/bst0180935 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002210386
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1073/pnas.0903805106 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047360880
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1074/jbc.m111.331967 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024240895
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1107/s0021889808006985 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032551326
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1107/s0907444904010145 schema:sameAs https://app.dimensions.ai/details/publication/pub.1011012411
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1107/s0907444909042073 schema:sameAs https://app.dimensions.ai/details/publication/pub.1018458004
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1107/s0907444910007493 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000235100
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1107/s0907444911001314 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032555428
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1107/s0907444994003112 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025573949
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1111/j.1365-2222.2005.02191.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009247333
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1111/j.1600-065x.2009.00833.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1007192678
136 rdf:type schema:CreativeWork
137 https://doi.org/10.1111/j.1747-0285.2007.00471.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009830802
138 rdf:type schema:CreativeWork
139 https://doi.org/10.2174/1381612043384303 schema:sameAs https://app.dimensions.ai/details/publication/pub.1069165213
140 rdf:type schema:CreativeWork
141 https://www.grid.ac/institutes/grid.421932.f schema:Organization
 




Preview window. Press ESC to close (or click here)


...