System And Method For Pain Monitoring Using A Multidimensional Analysis Of Physiological Signals


Ontology type: sgo:Patent     


Patent Info

DATE

2010-11-25T00:00

AUTHORS

ZUCKERMAN-STARK, GALILT , KLIGER, MARK

ABSTRACT

The present invention is for a method and system for pain classification and monitoring optionally in a subject that is an awake, semi-awake or sedated.

Related SciGraph Publications

  • 1996-08. Bagging predictors in MACHINE LEARNING
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "author": [
          {
            "name": "ZUCKERMAN-STARK, GALILT", 
            "type": "Person"
          }, 
          {
            "name": "KLIGER, MARK", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1007/bf00058655", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1002929950", 
              "https://doi.org/10.1007/bf00058655"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1111/j.1469-8986.1981.tb03033.x", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1009272349"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.1031596100", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1014613620"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1073/pnas.0500334102", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1024530701"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1126/science.290.5500.2323", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1051806676"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00003643-199703000-00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060178287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00003643-199703000-00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060178287"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1097/00003643-199703000-00004", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1060178287"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "datePublished": "2010-11-25T00:00", 
        "description": "

    The present invention is for a method and system for pain classification and monitoring optionally in a subject that is an awake, semi-awake or sedated.

    ", "id": "sg:patent.WO-2010134068-A1", "keywords": [ "multidimensional analysis", "physiological signal", "invention", "method", "classification", "awake" ], "name": "SYSTEM AND METHOD FOR PAIN MONITORING USING A MULTIDIMENSIONAL ANALYSIS OF PHYSIOLOGICAL SIGNALS", "sameAs": [ "https://app.dimensions.ai/details/patent/WO-2010134068-A1" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:06", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_00136.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.WO-2010134068-A1'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.WO-2010134068-A1'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.WO-2010134068-A1'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.WO-2010134068-A1'


     

    This table displays all metadata directly associated to this object as RDF triples.

    46 TRIPLES      13 PREDICATES      24 URIs      14 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.WO-2010134068-A1 schema:author N57209e2735b84f02a55a6cc33642c8a8
    2 schema:citation sg:pub.10.1007/bf00058655
    3 https://doi.org/10.1073/pnas.0500334102
    4 https://doi.org/10.1073/pnas.1031596100
    5 https://doi.org/10.1097/00003643-199703000-00004
    6 https://doi.org/10.1111/j.1469-8986.1981.tb03033.x
    7 https://doi.org/10.1126/science.290.5500.2323
    8 schema:datePublished 2010-11-25T00:00
    9 schema:description <p>The present invention is for a method and system for pain classification and monitoring optionally in a subject that is an awake, semi-awake or sedated.</p>
    10 schema:keywords awake
    11 classification
    12 invention
    13 method
    14 multidimensional analysis
    15 physiological signal
    16 schema:name SYSTEM AND METHOD FOR PAIN MONITORING USING A MULTIDIMENSIONAL ANALYSIS OF PHYSIOLOGICAL SIGNALS
    17 schema:sameAs https://app.dimensions.ai/details/patent/WO-2010134068-A1
    18 schema:sdDatePublished 2019-04-18T10:06
    19 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    20 schema:sdPublisher Neef0fe21e73945888f23b5236a8fceb4
    21 sgo:license sg:explorer/license/
    22 sgo:sdDataset patents
    23 rdf:type sgo:Patent
    24 N23352ec61fa14fee89a124dbce370f4c rdf:first N833a9e74e0194eef88a6055e3d7cfda3
    25 rdf:rest rdf:nil
    26 N57209e2735b84f02a55a6cc33642c8a8 rdf:first N90f9060c6c144408aa4e2c18ba3955bc
    27 rdf:rest N23352ec61fa14fee89a124dbce370f4c
    28 N833a9e74e0194eef88a6055e3d7cfda3 schema:name KLIGER, MARK
    29 rdf:type schema:Person
    30 N90f9060c6c144408aa4e2c18ba3955bc schema:name ZUCKERMAN-STARK, GALILT
    31 rdf:type schema:Person
    32 Neef0fe21e73945888f23b5236a8fceb4 schema:name Springer Nature - SN SciGraph project
    33 rdf:type schema:Organization
    34 sg:pub.10.1007/bf00058655 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002929950
    35 https://doi.org/10.1007/bf00058655
    36 rdf:type schema:CreativeWork
    37 https://doi.org/10.1073/pnas.0500334102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024530701
    38 rdf:type schema:CreativeWork
    39 https://doi.org/10.1073/pnas.1031596100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1014613620
    40 rdf:type schema:CreativeWork
    41 https://doi.org/10.1097/00003643-199703000-00004 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060178287
    42 rdf:type schema:CreativeWork
    43 https://doi.org/10.1111/j.1469-8986.1981.tb03033.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1009272349
    44 rdf:type schema:CreativeWork
    45 https://doi.org/10.1126/science.290.5500.2323 schema:sameAs https://app.dimensions.ai/details/publication/pub.1051806676
    46 rdf:type schema:CreativeWork
     




    Preview window. Press ESC to close (or click here)


    ...