Non-intrusive monitoring


Ontology type: sgo:Patent     


Patent Info

DATE

2018-04-17T00:00

AUTHORS

Steven B. Leeb , James Paris , John Sebastian Donnal , Jinyeong MOON , Christopher Schantz

ABSTRACT

Methods and apparatus for non-intrusive monitoring by sensing physical parameters such as electric and/or magnetic fields. Such apparatus and techniques may find application in a variety of fields, such as monitoring consumption of electricity, water, etc., in homes or businesses, for example, or industrial process monitoring.

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2867", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Steven B. Leeb", 
        "type": "Person"
      }, 
      {
        "name": "James Paris", 
        "type": "Person"
      }, 
      {
        "name": "John Sebastian Donnal", 
        "type": "Person"
      }, 
      {
        "name": "Jinyeong MOON", 
        "type": "Person"
      }, 
      {
        "name": "Christopher Schantz", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/j.ymssp.2005.02.001", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000282615"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1111/j.0028-1425.2007.00023.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1012214711"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-7788(95)00958-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043021110"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1256", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053403072", 
          "https://doi.org/10.1038/nmat1256"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/61.400897", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061200093"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/78.134453", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061227869"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/tim.2008.917179", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061637590"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-17T00:00", 
    "description": "

Methods and apparatus for non-intrusive monitoring by sensing physical parameters such as electric and/or magnetic fields. Such apparatus and techniques may find application in a variety of fields, such as monitoring consumption of electricity, water, etc., in homes or businesses, for example, or industrial process monitoring.

", "id": "sg:patent.US-9945692-B2", "keywords": [ "method", "apparatus", "physical parameter", "magnetic field", "technique", "Economics", "electricity", "water", "home", "Commerce", "industrial process" ], "name": "Non-intrusive monitoring", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.116068.8", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9945692-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:22", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_01728.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9945692-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9945692-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9945692-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9945692-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

71 TRIPLES      15 PREDICATES      32 URIs      19 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9945692-B2 schema:about anzsrc-for:2867
2 schema:author Nda9fa8cd01c64b729c2a2b88cfd6222a
3 schema:citation sg:pub.10.1038/nmat1256
4 https://doi.org/10.1016/0378-7788(95)00958-2
5 https://doi.org/10.1016/j.ymssp.2005.02.001
6 https://doi.org/10.1109/61.400897
7 https://doi.org/10.1109/78.134453
8 https://doi.org/10.1109/tim.2008.917179
9 https://doi.org/10.1111/j.0028-1425.2007.00023.x
10 schema:datePublished 2018-04-17T00:00
11 schema:description <p id="p-0001" num="0000">Methods and apparatus for non-intrusive monitoring by sensing physical parameters such as electric and/or magnetic fields. Such apparatus and techniques may find application in a variety of fields, such as monitoring consumption of electricity, water, etc., in homes or businesses, for example, or industrial process monitoring.</p>
12 schema:keywords Commerce
13 Economics
14 apparatus
15 electricity
16 home
17 industrial process
18 magnetic field
19 method
20 physical parameter
21 technique
22 water
23 schema:name Non-intrusive monitoring
24 schema:recipient https://www.grid.ac/institutes/grid.116068.8
25 schema:sameAs https://app.dimensions.ai/details/patent/US-9945692-B2
26 schema:sdDatePublished 2019-04-18T10:22
27 schema:sdLicense https://scigraph.springernature.com/explorer/license/
28 schema:sdPublisher N2f548fd455984d4bbe3f48e1a7fc3423
29 sgo:license sg:explorer/license/
30 sgo:sdDataset patents
31 rdf:type sgo:Patent
32 N2f548fd455984d4bbe3f48e1a7fc3423 schema:name Springer Nature - SN SciGraph project
33 rdf:type schema:Organization
34 N3e25b918d4854fd393c177c82b3087df schema:name Steven B. Leeb
35 rdf:type schema:Person
36 N4c78fe7c607f4bc48a662de0a6ca5a57 rdf:first Nf61c231b37a24f14bcfad09a97219776
37 rdf:rest Ne39fef7097dc420b8d83c7b7fe4dba1c
38 N5fe6f4abd17a4206808c93f224a09d04 schema:name James Paris
39 rdf:type schema:Person
40 N70c53c2171614b67b93a385039f34b65 rdf:first Nfcd654ada4a240959c2cd6d8c91fd0f1
41 rdf:rest rdf:nil
42 Nc49dd9b158524e7baf21d0575a96a2b8 rdf:first N5fe6f4abd17a4206808c93f224a09d04
43 rdf:rest N4c78fe7c607f4bc48a662de0a6ca5a57
44 Nd60ef2713b3845a0b29e4cb44c4a599f schema:name Jinyeong MOON
45 rdf:type schema:Person
46 Nda9fa8cd01c64b729c2a2b88cfd6222a rdf:first N3e25b918d4854fd393c177c82b3087df
47 rdf:rest Nc49dd9b158524e7baf21d0575a96a2b8
48 Ne39fef7097dc420b8d83c7b7fe4dba1c rdf:first Nd60ef2713b3845a0b29e4cb44c4a599f
49 rdf:rest N70c53c2171614b67b93a385039f34b65
50 Nf61c231b37a24f14bcfad09a97219776 schema:name John Sebastian Donnal
51 rdf:type schema:Person
52 Nfcd654ada4a240959c2cd6d8c91fd0f1 schema:name Christopher Schantz
53 rdf:type schema:Person
54 anzsrc-for:2867 schema:inDefinedTermSet anzsrc-for:
55 rdf:type schema:DefinedTerm
56 sg:pub.10.1038/nmat1256 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053403072
57 https://doi.org/10.1038/nmat1256
58 rdf:type schema:CreativeWork
59 https://doi.org/10.1016/0378-7788(95)00958-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1043021110
60 rdf:type schema:CreativeWork
61 https://doi.org/10.1016/j.ymssp.2005.02.001 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000282615
62 rdf:type schema:CreativeWork
63 https://doi.org/10.1109/61.400897 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061200093
64 rdf:type schema:CreativeWork
65 https://doi.org/10.1109/78.134453 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061227869
66 rdf:type schema:CreativeWork
67 https://doi.org/10.1109/tim.2008.917179 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061637590
68 rdf:type schema:CreativeWork
69 https://doi.org/10.1111/j.0028-1425.2007.00023.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1012214711
70 rdf:type schema:CreativeWork
71 https://www.grid.ac/institutes/grid.116068.8 schema:Organization
 




Preview window. Press ESC to close (or click here)


...