Array-based translocation and rearrangement assays


Ontology type: sgo:Patent     


Patent Info

DATE

2018-04-03T00:00

AUTHORS

Andrew Sparks , Michael H. Shapero , Glenn K. Fu , Keith W. Jones

ABSTRACT

Methods for detecting genomic rearrangements are provided. In one embodiment, methods are provided for the use of paired end tags from restriction fragments to detect genomic rearrangements. Sequences from the ends of the fragments are brought together to form ditags and the ditags are detected. Combinations of ditags are detected by an on-chip sequencing strategy that is described herein, using inosine for de novo sequencing of short segments of DNA. In another aspect, translocations are identified by using target specific capture and analysis of the captured products on a tiling array. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2620", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Andrew Sparks", 
        "type": "Person"
      }, 
      {
        "name": "Michael H. Shapero", 
        "type": "Person"
      }, 
      {
        "name": "Glenn K. Fu", 
        "type": "Person"
      }, 
      {
        "name": "Keith W. Jones", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1016/0378-1119(94)90001-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008911309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(94)90001-9", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1008911309"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/25.9.1854", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009171870"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.2.1.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016113910"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/23.17.3488", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017736439"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.4041005", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021030053"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(91)90345-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024463030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0378-1119(91)90345-c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024463030"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/24.23.4841", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1027850811"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.5090606", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1028327068"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/23.6.1087", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032701642"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.2536670100", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032730078"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/abio.1995.1402", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1034491625"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.98.1.206", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035832173"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2005.10.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037135731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/j.cell.2005.10.043", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037135731"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/gcc.10030", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037972148"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038506370", 
          "https://doi.org/10.1038/nmeth733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmeth733", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038506370", 
          "https://doi.org/10.1038/nmeth733"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.86.22.8902", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040187871"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/23.21.4407", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1042685674"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1101/gr.306102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1047578158"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.202610899", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050518611"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.95.8.4487", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1050813051"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.85.24.9436", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053324077"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/bbrc.1996.5948", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053395748"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1149504", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456540"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.274.5287.610", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062554585"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.278.5338.680", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062558446"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.8438152", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062655586"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.2144/98253st05", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1083325965"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2018-04-03T00:00", 
    "description": "

Methods for detecting genomic rearrangements are provided. In one embodiment, methods are provided for the use of paired end tags from restriction fragments to detect genomic rearrangements. Sequences from the ends of the fragments are brought together to form ditags and the ditags are detected. Combinations of ditags are detected by an on-chip sequencing strategy that is described herein, using inosine for de novo sequencing of short segments of DNA. In another aspect, translocations are identified by using target specific capture and analysis of the captured products on a tiling array.

", "id": "sg:patent.US-9932636-B2", "keywords": [ "translocation", "rearrangement", "detecting", "genomic rearrangement", "embodiment", "method", "paired-end", "restriction fragment", "sequence", "fragment", "sequencing strategy", "inosine", "de novo sequencing", "short segment", "DNA", "aspect", "target", "product", "tiling array" ], "name": "Array-based translocation and rearrangement assays", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.417703.6", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9932636-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:22", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_01718.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9932636-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9932636-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9932636-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9932636-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

139 TRIPLES      15 PREDICATES      61 URIs      27 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9932636-B2 schema:about anzsrc-for:2620
2 schema:author N4a92e6449d5d442fab681dfb57d96abf
3 schema:citation sg:pub.10.1038/nature03959
4 sg:pub.10.1038/nmeth733
5 https://doi.org/10.1002/gcc.10030
6 https://doi.org/10.1006/abio.1995.1402
7 https://doi.org/10.1006/bbrc.1996.5948
8 https://doi.org/10.1016/0378-1119(91)90345-c
9 https://doi.org/10.1016/0378-1119(94)90001-9
10 https://doi.org/10.1016/j.cell.2005.10.043
11 https://doi.org/10.1073/pnas.202610899
12 https://doi.org/10.1073/pnas.2536670100
13 https://doi.org/10.1073/pnas.85.24.9436
14 https://doi.org/10.1073/pnas.86.22.8902
15 https://doi.org/10.1073/pnas.95.8.4487
16 https://doi.org/10.1073/pnas.98.1.206
17 https://doi.org/10.1093/nar/23.17.3488
18 https://doi.org/10.1093/nar/23.21.4407
19 https://doi.org/10.1093/nar/23.6.1087
20 https://doi.org/10.1093/nar/24.23.4841
21 https://doi.org/10.1093/nar/25.9.1854
22 https://doi.org/10.1101/gr.2.1.21
23 https://doi.org/10.1101/gr.306102
24 https://doi.org/10.1101/gr.4041005
25 https://doi.org/10.1101/gr.5090606
26 https://doi.org/10.1126/science.1149504
27 https://doi.org/10.1126/science.274.5287.610
28 https://doi.org/10.1126/science.278.5338.680
29 https://doi.org/10.1126/science.8438152
30 https://doi.org/10.2144/98253st05
31 schema:datePublished 2018-04-03T00:00
32 schema:description <p id="p-0001" num="0000">Methods for detecting genomic rearrangements are provided. In one embodiment, methods are provided for the use of paired end tags from restriction fragments to detect genomic rearrangements. Sequences from the ends of the fragments are brought together to form ditags and the ditags are detected. Combinations of ditags are detected by an on-chip sequencing strategy that is described herein, using inosine for de novo sequencing of short segments of DNA. In another aspect, translocations are identified by using target specific capture and analysis of the captured products on a tiling array.</p>
33 schema:keywords DNA
34 aspect
35 de novo sequencing
36 detecting
37 embodiment
38 fragment
39 genomic rearrangement
40 inosine
41 method
42 paired-end
43 product
44 rearrangement
45 restriction fragment
46 sequence
47 sequencing strategy
48 short segment
49 target
50 tiling array
51 translocation
52 schema:name Array-based translocation and rearrangement assays
53 schema:recipient https://www.grid.ac/institutes/grid.417703.6
54 schema:sameAs https://app.dimensions.ai/details/patent/US-9932636-B2
55 schema:sdDatePublished 2019-04-18T10:22
56 schema:sdLicense https://scigraph.springernature.com/explorer/license/
57 schema:sdPublisher N855d5e96e3fa4ec1aaf11e4d3e6fbec1
58 sgo:license sg:explorer/license/
59 sgo:sdDataset patents
60 rdf:type sgo:Patent
61 N298bed8d206a4da2af47cb0cff4309e4 rdf:first Nc11c16a1a701429c870e0ab0e0931903
62 rdf:rest N9a6bfc889fdf44788097645f79faa83b
63 N3cc5ad54d44a43e29de0b06fda475124 schema:name Andrew Sparks
64 rdf:type schema:Person
65 N4a92e6449d5d442fab681dfb57d96abf rdf:first N3cc5ad54d44a43e29de0b06fda475124
66 rdf:rest N298bed8d206a4da2af47cb0cff4309e4
67 N61fd7a7d76f94bf9aeb642db6536675a rdf:first Nfefb39529829426a986d9e115abfdebe
68 rdf:rest rdf:nil
69 N855d5e96e3fa4ec1aaf11e4d3e6fbec1 schema:name Springer Nature - SN SciGraph project
70 rdf:type schema:Organization
71 N9a6bfc889fdf44788097645f79faa83b rdf:first Ndc3387184993496a945f0de323e763c3
72 rdf:rest N61fd7a7d76f94bf9aeb642db6536675a
73 Nc11c16a1a701429c870e0ab0e0931903 schema:name Michael H. Shapero
74 rdf:type schema:Person
75 Ndc3387184993496a945f0de323e763c3 schema:name Glenn K. Fu
76 rdf:type schema:Person
77 Nfefb39529829426a986d9e115abfdebe schema:name Keith W. Jones
78 rdf:type schema:Person
79 anzsrc-for:2620 schema:inDefinedTermSet anzsrc-for:
80 rdf:type schema:DefinedTerm
81 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
82 https://doi.org/10.1038/nature03959
83 rdf:type schema:CreativeWork
84 sg:pub.10.1038/nmeth733 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038506370
85 https://doi.org/10.1038/nmeth733
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1002/gcc.10030 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037972148
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1006/abio.1995.1402 schema:sameAs https://app.dimensions.ai/details/publication/pub.1034491625
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1006/bbrc.1996.5948 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053395748
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1016/0378-1119(91)90345-c schema:sameAs https://app.dimensions.ai/details/publication/pub.1024463030
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1016/0378-1119(94)90001-9 schema:sameAs https://app.dimensions.ai/details/publication/pub.1008911309
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1016/j.cell.2005.10.043 schema:sameAs https://app.dimensions.ai/details/publication/pub.1037135731
98 rdf:type schema:CreativeWork
99 https://doi.org/10.1073/pnas.202610899 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050518611
100 rdf:type schema:CreativeWork
101 https://doi.org/10.1073/pnas.2536670100 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032730078
102 rdf:type schema:CreativeWork
103 https://doi.org/10.1073/pnas.85.24.9436 schema:sameAs https://app.dimensions.ai/details/publication/pub.1053324077
104 rdf:type schema:CreativeWork
105 https://doi.org/10.1073/pnas.86.22.8902 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040187871
106 rdf:type schema:CreativeWork
107 https://doi.org/10.1073/pnas.95.8.4487 schema:sameAs https://app.dimensions.ai/details/publication/pub.1050813051
108 rdf:type schema:CreativeWork
109 https://doi.org/10.1073/pnas.98.1.206 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035832173
110 rdf:type schema:CreativeWork
111 https://doi.org/10.1093/nar/23.17.3488 schema:sameAs https://app.dimensions.ai/details/publication/pub.1017736439
112 rdf:type schema:CreativeWork
113 https://doi.org/10.1093/nar/23.21.4407 schema:sameAs https://app.dimensions.ai/details/publication/pub.1042685674
114 rdf:type schema:CreativeWork
115 https://doi.org/10.1093/nar/23.6.1087 schema:sameAs https://app.dimensions.ai/details/publication/pub.1032701642
116 rdf:type schema:CreativeWork
117 https://doi.org/10.1093/nar/24.23.4841 schema:sameAs https://app.dimensions.ai/details/publication/pub.1027850811
118 rdf:type schema:CreativeWork
119 https://doi.org/10.1093/nar/25.9.1854 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009171870
120 rdf:type schema:CreativeWork
121 https://doi.org/10.1101/gr.2.1.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016113910
122 rdf:type schema:CreativeWork
123 https://doi.org/10.1101/gr.306102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1047578158
124 rdf:type schema:CreativeWork
125 https://doi.org/10.1101/gr.4041005 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021030053
126 rdf:type schema:CreativeWork
127 https://doi.org/10.1101/gr.5090606 schema:sameAs https://app.dimensions.ai/details/publication/pub.1028327068
128 rdf:type schema:CreativeWork
129 https://doi.org/10.1126/science.1149504 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456540
130 rdf:type schema:CreativeWork
131 https://doi.org/10.1126/science.274.5287.610 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062554585
132 rdf:type schema:CreativeWork
133 https://doi.org/10.1126/science.278.5338.680 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062558446
134 rdf:type schema:CreativeWork
135 https://doi.org/10.1126/science.8438152 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062655586
136 rdf:type schema:CreativeWork
137 https://doi.org/10.2144/98253st05 schema:sameAs https://app.dimensions.ai/details/publication/pub.1083325965
138 rdf:type schema:CreativeWork
139 https://www.grid.ac/institutes/grid.417703.6 schema:Organization
 




Preview window. Press ESC to close (or click here)


...