Microstructure synthesis by flow lithography and polymerization


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Patrick Seamus Doyle , Daniel Colin Pregibon , Dhananjay Dendukuri

ABSTRACT

In a method for synthesizing polymeric microstructures, a monomer stream is flowed, at a selected flow rate, through a fluidic channel. At least one shaped pulse of illumination is projected to the monomer stream, defining in the monomer stream a shape of at least one microstructure corresponding to the illumination pulse shape while polymerizing that microstructure shape in the monomer stream by the illumination pulse. An article of manufacture includes a non-spheroidal polymeric microstructure that has a plurality of distinct material regions. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2447", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Patrick Seamus Doyle", 
        "type": "Person"
      }, 
      {
        "name": "Daniel Colin Pregibon", 
        "type": "Person"
      }, 
      {
        "name": "Dhananjay Dendukuri", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1039/b606043a", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1003329556"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1267", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1004505421", 
          "https://doi.org/10.1038/nmat1267"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b506194f", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1007093926"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1486", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009515550", 
          "https://doi.org/10.1038/nmat1486"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja051977c", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1017162602"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1270", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1019101452", 
          "https://doi.org/10.1038/nmat1270"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/adma.200502431", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023254248"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.285.5424.83", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1024794668"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35007047", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1025343153", 
          "https://doi.org/10.1038/35007047"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/26.6.1515", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1030841421"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1039/b505099e", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1037605695"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/s0032-3861(00)00039-2", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1044026163"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/la047368k", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048036652"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1080/07391102.2006.10507099", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1048377821"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ja060882n", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1053299024"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1021/ie0201415", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1055596136"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1109/84.825780", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1061240734"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1246/cl.2006.234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1064491551"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "description": "

In a method for synthesizing polymeric microstructures, a monomer stream is flowed, at a selected flow rate, through a fluidic channel. At least one shaped pulse of illumination is projected to the monomer stream, defining in the monomer stream a shape of at least one microstructure corresponding to the illumination pulse shape while polymerizing that microstructure shape in the monomer stream by the illumination pulse. An article of manufacture includes a non-spheroidal polymeric microstructure that has a plurality of distinct material regions.

", "id": "sg:patent.US-9910352-B2", "keywords": [ "microstructure", "lithography", "polymerization", "method", "monomer", "flow rate", "shaped pulse", "Lighting", "shape", "pulse", "article", "plurality" ], "name": "Microstructure synthesis by flow lithography and polymerization", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.116068.8", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9910352-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:37", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_ec415531.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9910352-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9910352-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9910352-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9910352-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

99 TRIPLES      14 PREDICATES      43 URIs      19 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9910352-B2 schema:about anzsrc-for:2447
2 schema:author N46c838b4cd2e4397b31f4a101f197e15
3 schema:citation sg:pub.10.1038/35007047
4 sg:pub.10.1038/nmat1267
5 sg:pub.10.1038/nmat1270
6 sg:pub.10.1038/nmat1486
7 https://doi.org/10.1002/adma.200502431
8 https://doi.org/10.1016/s0032-3861(00)00039-2
9 https://doi.org/10.1021/ie0201415
10 https://doi.org/10.1021/ja051977c
11 https://doi.org/10.1021/ja060882n
12 https://doi.org/10.1021/la047368k
13 https://doi.org/10.1039/b505099e
14 https://doi.org/10.1039/b506194f
15 https://doi.org/10.1039/b606043a
16 https://doi.org/10.1080/07391102.2006.10507099
17 https://doi.org/10.1093/nar/26.6.1515
18 https://doi.org/10.1109/84.825780
19 https://doi.org/10.1126/science.285.5424.83
20 https://doi.org/10.1246/cl.2006.234
21 schema:description <p id="p-0001" num="0000">In a method for synthesizing polymeric microstructures, a monomer stream is flowed, at a selected flow rate, through a fluidic channel. At least one shaped pulse of illumination is projected to the monomer stream, defining in the monomer stream a shape of at least one microstructure corresponding to the illumination pulse shape while polymerizing that microstructure shape in the monomer stream by the illumination pulse. An article of manufacture includes a non-spheroidal polymeric microstructure that has a plurality of distinct material regions.</p>
22 schema:keywords Lighting
23 article
24 flow rate
25 lithography
26 method
27 microstructure
28 monomer
29 plurality
30 polymerization
31 pulse
32 shape
33 shaped pulse
34 schema:name Microstructure synthesis by flow lithography and polymerization
35 schema:recipient https://www.grid.ac/institutes/grid.116068.8
36 schema:sameAs https://app.dimensions.ai/details/patent/US-9910352-B2
37 schema:sdDatePublished 2019-03-07T15:37
38 schema:sdLicense https://scigraph.springernature.com/explorer/license/
39 schema:sdPublisher N4a9906c927434f7fb7b2067cf9db556e
40 sgo:license sg:explorer/license/
41 sgo:sdDataset patents
42 rdf:type sgo:Patent
43 N12a7512083bd4e7191a5142a31f13a48 rdf:first Nc0b60d8730c64a62a00134b4effe6d6c
44 rdf:rest N607f53a9ebaf4aae94fc4cef86831807
45 N3f175539f6f3442abe9cc3bc98c0e143 schema:name Dhananjay Dendukuri
46 rdf:type schema:Person
47 N46c838b4cd2e4397b31f4a101f197e15 rdf:first Nbee714ac2ffc40279f04112f672b2b13
48 rdf:rest N12a7512083bd4e7191a5142a31f13a48
49 N4a9906c927434f7fb7b2067cf9db556e schema:name Springer Nature - SN SciGraph project
50 rdf:type schema:Organization
51 N607f53a9ebaf4aae94fc4cef86831807 rdf:first N3f175539f6f3442abe9cc3bc98c0e143
52 rdf:rest rdf:nil
53 Nbee714ac2ffc40279f04112f672b2b13 schema:name Patrick Seamus Doyle
54 rdf:type schema:Person
55 Nc0b60d8730c64a62a00134b4effe6d6c schema:name Daniel Colin Pregibon
56 rdf:type schema:Person
57 anzsrc-for:2447 schema:inDefinedTermSet anzsrc-for:
58 rdf:type schema:DefinedTerm
59 sg:pub.10.1038/35007047 schema:sameAs https://app.dimensions.ai/details/publication/pub.1025343153
60 https://doi.org/10.1038/35007047
61 rdf:type schema:CreativeWork
62 sg:pub.10.1038/nmat1267 schema:sameAs https://app.dimensions.ai/details/publication/pub.1004505421
63 https://doi.org/10.1038/nmat1267
64 rdf:type schema:CreativeWork
65 sg:pub.10.1038/nmat1270 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019101452
66 https://doi.org/10.1038/nmat1270
67 rdf:type schema:CreativeWork
68 sg:pub.10.1038/nmat1486 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009515550
69 https://doi.org/10.1038/nmat1486
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1002/adma.200502431 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023254248
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1016/s0032-3861(00)00039-2 schema:sameAs https://app.dimensions.ai/details/publication/pub.1044026163
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1021/ie0201415 schema:sameAs https://app.dimensions.ai/details/publication/pub.1055596136
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1021/ja051977c schema:sameAs https://app.dimensions.ai/details/publication/pub.1017162602
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1021/ja060882n schema:sameAs https://app.dimensions.ai/details/publication/pub.1053299024
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1021/la047368k schema:sameAs https://app.dimensions.ai/details/publication/pub.1048036652
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1039/b505099e schema:sameAs https://app.dimensions.ai/details/publication/pub.1037605695
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1039/b506194f schema:sameAs https://app.dimensions.ai/details/publication/pub.1007093926
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1039/b606043a schema:sameAs https://app.dimensions.ai/details/publication/pub.1003329556
88 rdf:type schema:CreativeWork
89 https://doi.org/10.1080/07391102.2006.10507099 schema:sameAs https://app.dimensions.ai/details/publication/pub.1048377821
90 rdf:type schema:CreativeWork
91 https://doi.org/10.1093/nar/26.6.1515 schema:sameAs https://app.dimensions.ai/details/publication/pub.1030841421
92 rdf:type schema:CreativeWork
93 https://doi.org/10.1109/84.825780 schema:sameAs https://app.dimensions.ai/details/publication/pub.1061240734
94 rdf:type schema:CreativeWork
95 https://doi.org/10.1126/science.285.5424.83 schema:sameAs https://app.dimensions.ai/details/publication/pub.1024794668
96 rdf:type schema:CreativeWork
97 https://doi.org/10.1246/cl.2006.234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1064491551
98 rdf:type schema:CreativeWork
99 https://www.grid.ac/institutes/grid.116068.8 schema:Organization
 




Preview window. Press ESC to close (or click here)


...