Method for forming PN junction in graphene with application of DNA and PN junction structure formed using the same


Ontology type: sgo:Patent     


Patent Info

DATE

N/A

AUTHORS

Chulki Kim , Yeong Jun KIM , Young Mo JUNG , Seong Chan Jun , Taikjin Lee , Seok Lee , Young Tae Byun , Deok Ha Woo , Sun Ho Kim , Min Ah Seo , Jae Hun Kim , Jong Chang Yi

ABSTRACT

A method for forming a PN junction in graphene includes: forming a graphene layer, and forming a DNA molecule layer on a partial region of the graphene layer, the DNA molecule layer having a nucleotide sequence structure designed to provide the graphene layer with a predetermined doping property upon adsorption on the graphene layer. The DNA molecule has a nucleotide sequence structure designed for doping of graphene so that doped graphene has a specific semiconductor property. The DNA molecule is coated on the surface of the graphene layer of which the partial region is exposed by micro patterning, and thereby, PN junctions of various structures may be formed by a region coated with the DNA molecule and a non-coated region in the graphene layer. More... »

Related SciGraph Publications

  • 2013-08. Low-frequency 1/f noise in graphene devices in NATURE NANOTECHNOLOGY
  • JSON-LD is the canonical representation for SciGraph data.

    TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

    [
      {
        "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
        "about": [
          {
            "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2921", 
            "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
            "type": "DefinedTerm"
          }
        ], 
        "author": [
          {
            "name": "Chulki Kim", 
            "type": "Person"
          }, 
          {
            "name": "Yeong Jun KIM", 
            "type": "Person"
          }, 
          {
            "name": "Young Mo JUNG", 
            "type": "Person"
          }, 
          {
            "name": "Seong Chan Jun", 
            "type": "Person"
          }, 
          {
            "name": "Taikjin Lee", 
            "type": "Person"
          }, 
          {
            "name": "Seok Lee", 
            "type": "Person"
          }, 
          {
            "name": "Young Tae Byun", 
            "type": "Person"
          }, 
          {
            "name": "Deok Ha Woo", 
            "type": "Person"
          }, 
          {
            "name": "Sun Ho Kim", 
            "type": "Person"
          }, 
          {
            "name": "Min Ah Seo", 
            "type": "Person"
          }, 
          {
            "name": "Jae Hun Kim", 
            "type": "Person"
          }, 
          {
            "name": "Jong Chang Yi", 
            "type": "Person"
          }
        ], 
        "citation": [
          {
            "id": "https://doi.org/10.1021/nl900203n", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1012022693"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "sg:pub.10.1038/nnano.2013.144", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1019276568", 
              "https://doi.org/10.1038/nnano.2013.144"
            ], 
            "type": "CreativeWork"
          }, 
          {
            "id": "https://doi.org/10.1021/nl072364w", 
            "sameAs": [
              "https://app.dimensions.ai/details/publication/pub.1025673921"
            ], 
            "type": "CreativeWork"
          }
        ], 
        "description": "

    A method for forming a PN junction in graphene includes: forming a graphene layer, and forming a DNA molecule layer on a partial region of the graphene layer, the DNA molecule layer having a nucleotide sequence structure designed to provide the graphene layer with a predetermined doping property upon adsorption on the graphene layer. The DNA molecule has a nucleotide sequence structure designed for doping of graphene so that doped graphene has a specific semiconductor property. The DNA molecule is coated on the surface of the graphene layer of which the partial region is exposed by micro patterning, and thereby, PN junctions of various structures may be formed by a region coated with the DNA molecule and a non-coated region in the graphene layer.

    ", "id": "sg:patent.US-9831452-B2", "keywords": [ "method", "junction", "Graphite", "DNA", "graphene layer", "DNA molecule", "nucleotide", "adsorption", "doping", "semiconductor", "surface", "patterning" ], "name": "Method for forming PN junction in graphene with application of DNA and PN junction structure formed using the same", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.37172.30", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9831452-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-03-07T15:36", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com.uberresearch.data.dev.patents-pipeline/full_run_10/sn-export/5eb3e5a348d7f117b22cc85fb0b02730/0000100128-0000348334/json_export_c3e5ed81.jsonl", "type": "Patent" } ]
     

    Download the RDF metadata as:  json-ld nt turtle xml License info

    HOW TO GET THIS DATA PROGRAMMATICALLY:

    JSON-LD is a popular format for linked data which is fully compatible with JSON.

    curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9831452-B2'

    N-Triples is a line-based linked data format ideal for batch operations.

    curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9831452-B2'

    Turtle is a human-readable linked data format.

    curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9831452-B2'

    RDF/XML is a standard XML format for linked data.

    curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9831452-B2'


     

    This table displays all metadata directly associated to this object as RDF triples.

    87 TRIPLES      14 PREDICATES      28 URIs      19 LITERALS      2 BLANK NODES

    Subject Predicate Object
    1 sg:patent.US-9831452-B2 schema:about anzsrc-for:2921
    2 schema:author Nfee6414ee7d845daa72549c4330b4f86
    3 schema:citation sg:pub.10.1038/nnano.2013.144
    4 https://doi.org/10.1021/nl072364w
    5 https://doi.org/10.1021/nl900203n
    6 schema:description <p id="p-0001" num="0000">A method for forming a PN junction in graphene includes: forming a graphene layer, and forming a DNA molecule layer on a partial region of the graphene layer, the DNA molecule layer having a nucleotide sequence structure designed to provide the graphene layer with a predetermined doping property upon adsorption on the graphene layer. The DNA molecule has a nucleotide sequence structure designed for doping of graphene so that doped graphene has a specific semiconductor property. The DNA molecule is coated on the surface of the graphene layer of which the partial region is exposed by micro patterning, and thereby, PN junctions of various structures may be formed by a region coated with the DNA molecule and a non-coated region in the graphene layer.</p>
    7 schema:keywords DNA
    8 DNA molecule
    9 Graphite
    10 adsorption
    11 doping
    12 graphene layer
    13 junction
    14 method
    15 nucleotide
    16 patterning
    17 semiconductor
    18 surface
    19 schema:name Method for forming PN junction in graphene with application of DNA and PN junction structure formed using the same
    20 schema:recipient https://www.grid.ac/institutes/grid.37172.30
    21 schema:sameAs https://app.dimensions.ai/details/patent/US-9831452-B2
    22 schema:sdDatePublished 2019-03-07T15:36
    23 schema:sdLicense https://scigraph.springernature.com/explorer/license/
    24 schema:sdPublisher N052954fb08c0432a9efa261af78071bd
    25 sgo:license sg:explorer/license/
    26 sgo:sdDataset patents
    27 rdf:type sgo:Patent
    28 N052954fb08c0432a9efa261af78071bd schema:name Springer Nature - SN SciGraph project
    29 rdf:type schema:Organization
    30 N1c37c00a5a0842b29a4c547313933b13 schema:name Deok Ha Woo
    31 rdf:type schema:Person
    32 N2d0465f03fac4b83923efb1690c52a05 schema:name Young Tae Byun
    33 rdf:type schema:Person
    34 N2f49b6e889524ceba31307ea6806fd94 rdf:first N529ac081520d4fddb5e880a03b241bbd
    35 rdf:rest Ncacad76902a54b52a1460e5b146f5105
    36 N33ceebbeb10d49cc8404daf928f9ad27 schema:name Chulki Kim
    37 rdf:type schema:Person
    38 N3b86079197c44438a2e10787d6530e57 rdf:first N1c37c00a5a0842b29a4c547313933b13
    39 rdf:rest N2f49b6e889524ceba31307ea6806fd94
    40 N47310dfb17dc4537b06bc614eebafaa5 rdf:first Ne1ce140d649c4c39b39bac0e0f56734a
    41 rdf:rest Nda3cb0b5f94041d991fc7e065bfe3688
    42 N4a94b14dd30145a594aacdeaf0f81c1a rdf:first N2d0465f03fac4b83923efb1690c52a05
    43 rdf:rest N3b86079197c44438a2e10787d6530e57
    44 N529ac081520d4fddb5e880a03b241bbd schema:name Sun Ho Kim
    45 rdf:type schema:Person
    46 N658937d9006847e682f5b920fa205570 schema:name Min Ah Seo
    47 rdf:type schema:Person
    48 N7eac9f439a124abe912f8de673ce06cf rdf:first Nc6a88372f7bd4bc787415b69da77b039
    49 rdf:rest N4a94b14dd30145a594aacdeaf0f81c1a
    50 N98bf226aac774751bd8f1afd4f86ddc8 rdf:first Nd257ac53a79c48ef8ceada4c6db8e2e0
    51 rdf:rest N7eac9f439a124abe912f8de673ce06cf
    52 N99fe72aab550452bb5fd3f636f9ea3c7 rdf:first Nb6d9e065d4c14e6f919bc2a9c7ce1da9
    53 rdf:rest N47310dfb17dc4537b06bc614eebafaa5
    54 Na5598de99c86431abaa4f38fdd3dfa04 rdf:first Na65b05b0e37f4186bab72145cd3362a8
    55 rdf:rest rdf:nil
    56 Na65b05b0e37f4186bab72145cd3362a8 schema:name Jong Chang Yi
    57 rdf:type schema:Person
    58 Nb6d9e065d4c14e6f919bc2a9c7ce1da9 schema:name Yeong Jun KIM
    59 rdf:type schema:Person
    60 Nc306267b3cbf4d8bb36bc90970b11f81 schema:name Jae Hun Kim
    61 rdf:type schema:Person
    62 Nc6a88372f7bd4bc787415b69da77b039 schema:name Seok Lee
    63 rdf:type schema:Person
    64 Ncacad76902a54b52a1460e5b146f5105 rdf:first N658937d9006847e682f5b920fa205570
    65 rdf:rest Nfd11e18342294b78b8de87f59ef5cb0d
    66 Nd257ac53a79c48ef8ceada4c6db8e2e0 schema:name Taikjin Lee
    67 rdf:type schema:Person
    68 Nda3cb0b5f94041d991fc7e065bfe3688 rdf:first Nf6ab5e3ecc8541d88ef5ec28a040ed70
    69 rdf:rest N98bf226aac774751bd8f1afd4f86ddc8
    70 Ne1ce140d649c4c39b39bac0e0f56734a schema:name Young Mo JUNG
    71 rdf:type schema:Person
    72 Nf6ab5e3ecc8541d88ef5ec28a040ed70 schema:name Seong Chan Jun
    73 rdf:type schema:Person
    74 Nfd11e18342294b78b8de87f59ef5cb0d rdf:first Nc306267b3cbf4d8bb36bc90970b11f81
    75 rdf:rest Na5598de99c86431abaa4f38fdd3dfa04
    76 Nfee6414ee7d845daa72549c4330b4f86 rdf:first N33ceebbeb10d49cc8404daf928f9ad27
    77 rdf:rest N99fe72aab550452bb5fd3f636f9ea3c7
    78 anzsrc-for:2921 schema:inDefinedTermSet anzsrc-for:
    79 rdf:type schema:DefinedTerm
    80 sg:pub.10.1038/nnano.2013.144 schema:sameAs https://app.dimensions.ai/details/publication/pub.1019276568
    81 https://doi.org/10.1038/nnano.2013.144
    82 rdf:type schema:CreativeWork
    83 https://doi.org/10.1021/nl072364w schema:sameAs https://app.dimensions.ai/details/publication/pub.1025673921
    84 rdf:type schema:CreativeWork
    85 https://doi.org/10.1021/nl900203n schema:sameAs https://app.dimensions.ai/details/publication/pub.1012022693
    86 rdf:type schema:CreativeWork
    87 https://www.grid.ac/institutes/grid.37172.30 schema:Organization
     




    Preview window. Press ESC to close (or click here)


    ...