High throughput screening of populations carrying naturally occurring mutations


Ontology type: sgo:Patent     


Patent Info

DATE

2017-08-29T00:00

AUTHORS

Michael Josephus Theresia Van Eijk , Adrianus Johannes Van Tunen

ABSTRACT

Efficient methods are disclosed for the high throughput identification of mutations in genes in members of mutagenized populations. The methods comprise DNA isolation, pooling, amplification, creation of libraries, high throughput sequencing of libraries, preferably by sequencing-by-synthesis technologies, identification of mutations and identification of the member of the population carrying the mutation and identification of the mutation. More... »

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2620", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Michael Josephus Theresia Van Eijk", 
        "type": "Person"
      }, 
      {
        "name": "Adrianus Johannes Van Tunen", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "https://doi.org/10.1111/j.1365-313x.2004.02088.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1001178142"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.102.017855", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1002448690"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2002.01481.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005337900"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2002.01499.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1005854551"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-002-0722-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009560933", 
          "https://doi.org/10.1007/s00439-002-0722-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00439-002-0722-6", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009560933", 
          "https://doi.org/10.1007/s00439-002-0722-6"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1117389", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010697532"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1093/nar/gkg375", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016134561"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.126.2.480", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1020427250"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature03959", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1021574562", 
          "https://doi.org/10.1038/nature03959"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.123.2.439", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1023566091"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1104/pp.103.025015", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1026344582"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031098838", 
          "https://doi.org/10.1038/35035083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/35035083", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1031098838", 
          "https://doi.org/10.1038/35035083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1046/j.1365-313x.2001.01084.x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1032806855"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.2003.3211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035541412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1006/jtbi.2003.3211", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035541412"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.0409339102", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1035663961"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1073/pnas.90.16.7879", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1038360632"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.10292", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1039334432"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1002/humu.10078", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040927563"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-005-0003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043357200", 
          "https://doi.org/10.1007/s00438-005-0003-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1007/s00438-005-0003-x", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1043357200", 
          "https://doi.org/10.1007/s00438-005-0003-x"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1086/302894", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1058610447"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.3353714", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062609115"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-08-29T00:00", 
    "description": "

Efficient methods are disclosed for the high throughput identification of mutations in genes in members of mutagenized populations. The methods comprise DNA isolation, pooling, amplification, creation of libraries, high throughput sequencing of libraries, preferably by sequencing-by-synthesis technologies, identification of mutations and identification of the member of the population carrying the mutation and identification of the mutation.

", "id": "sg:patent.US-9745627-B2", "keywords": [ "high throughput screening", "population", "mutation", "efficient method", "high-throughput identification", "gene", "method", "DNA isolation", "amplification", "creation", "library", "high-throughput sequencing", "sequencing-by-synthesis" ], "name": "High throughput screening of populations carrying naturally occurring mutations", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.425600.5", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9745627-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:20", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_01528.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9745627-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9745627-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9745627-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9745627-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

106 TRIPLES      15 PREDICATES      48 URIs      21 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9745627-B2 schema:about anzsrc-for:2620
2 schema:author N998f645cf5e54edabe3ba27284dc2994
3 schema:citation sg:pub.10.1007/s00438-005-0003-x
4 sg:pub.10.1007/s00439-002-0722-6
5 sg:pub.10.1038/35035083
6 sg:pub.10.1038/nature03959
7 https://doi.org/10.1002/humu.10078
8 https://doi.org/10.1002/humu.10292
9 https://doi.org/10.1006/jtbi.2003.3211
10 https://doi.org/10.1046/j.1365-313x.2001.01084.x
11 https://doi.org/10.1046/j.1365-313x.2002.01481.x
12 https://doi.org/10.1046/j.1365-313x.2002.01499.x
13 https://doi.org/10.1073/pnas.0409339102
14 https://doi.org/10.1073/pnas.90.16.7879
15 https://doi.org/10.1086/302894
16 https://doi.org/10.1093/nar/gkg375
17 https://doi.org/10.1104/pp.102.017855
18 https://doi.org/10.1104/pp.103.025015
19 https://doi.org/10.1104/pp.123.2.439
20 https://doi.org/10.1104/pp.126.2.480
21 https://doi.org/10.1111/j.1365-313x.2004.02088.x
22 https://doi.org/10.1126/science.1117389
23 https://doi.org/10.1126/science.3353714
24 schema:datePublished 2017-08-29T00:00
25 schema:description <p id="p-0001" num="0000">Efficient methods are disclosed for the high throughput identification of mutations in genes in members of mutagenized populations. The methods comprise DNA isolation, pooling, amplification, creation of libraries, high throughput sequencing of libraries, preferably by sequencing-by-synthesis technologies, identification of mutations and identification of the member of the population carrying the mutation and identification of the mutation.</p>
26 schema:keywords DNA isolation
27 amplification
28 creation
29 efficient method
30 gene
31 high throughput screening
32 high-throughput identification
33 high-throughput sequencing
34 library
35 method
36 mutation
37 population
38 sequencing-by-synthesis
39 schema:name High throughput screening of populations carrying naturally occurring mutations
40 schema:recipient https://www.grid.ac/institutes/grid.425600.5
41 schema:sameAs https://app.dimensions.ai/details/patent/US-9745627-B2
42 schema:sdDatePublished 2019-04-18T10:20
43 schema:sdLicense https://scigraph.springernature.com/explorer/license/
44 schema:sdPublisher N2bea53bdacf54257a7c9ccb1a5f0b3ed
45 sgo:license sg:explorer/license/
46 sgo:sdDataset patents
47 rdf:type sgo:Patent
48 N18c3ca8c9fa94df3a30537c3b38388b1 schema:name Michael Josephus Theresia Van Eijk
49 rdf:type schema:Person
50 N2bea53bdacf54257a7c9ccb1a5f0b3ed schema:name Springer Nature - SN SciGraph project
51 rdf:type schema:Organization
52 N4d8d8938236442a4916ebc629c477975 rdf:first N8ca3970d97a14126b70531d86e763083
53 rdf:rest rdf:nil
54 N8ca3970d97a14126b70531d86e763083 schema:name Adrianus Johannes Van Tunen
55 rdf:type schema:Person
56 N998f645cf5e54edabe3ba27284dc2994 rdf:first N18c3ca8c9fa94df3a30537c3b38388b1
57 rdf:rest N4d8d8938236442a4916ebc629c477975
58 anzsrc-for:2620 schema:inDefinedTermSet anzsrc-for:
59 rdf:type schema:DefinedTerm
60 sg:pub.10.1007/s00438-005-0003-x schema:sameAs https://app.dimensions.ai/details/publication/pub.1043357200
61 https://doi.org/10.1007/s00438-005-0003-x
62 rdf:type schema:CreativeWork
63 sg:pub.10.1007/s00439-002-0722-6 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009560933
64 https://doi.org/10.1007/s00439-002-0722-6
65 rdf:type schema:CreativeWork
66 sg:pub.10.1038/35035083 schema:sameAs https://app.dimensions.ai/details/publication/pub.1031098838
67 https://doi.org/10.1038/35035083
68 rdf:type schema:CreativeWork
69 sg:pub.10.1038/nature03959 schema:sameAs https://app.dimensions.ai/details/publication/pub.1021574562
70 https://doi.org/10.1038/nature03959
71 rdf:type schema:CreativeWork
72 https://doi.org/10.1002/humu.10078 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040927563
73 rdf:type schema:CreativeWork
74 https://doi.org/10.1002/humu.10292 schema:sameAs https://app.dimensions.ai/details/publication/pub.1039334432
75 rdf:type schema:CreativeWork
76 https://doi.org/10.1006/jtbi.2003.3211 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035541412
77 rdf:type schema:CreativeWork
78 https://doi.org/10.1046/j.1365-313x.2001.01084.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1032806855
79 rdf:type schema:CreativeWork
80 https://doi.org/10.1046/j.1365-313x.2002.01481.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005337900
81 rdf:type schema:CreativeWork
82 https://doi.org/10.1046/j.1365-313x.2002.01499.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1005854551
83 rdf:type schema:CreativeWork
84 https://doi.org/10.1073/pnas.0409339102 schema:sameAs https://app.dimensions.ai/details/publication/pub.1035663961
85 rdf:type schema:CreativeWork
86 https://doi.org/10.1073/pnas.90.16.7879 schema:sameAs https://app.dimensions.ai/details/publication/pub.1038360632
87 rdf:type schema:CreativeWork
88 https://doi.org/10.1086/302894 schema:sameAs https://app.dimensions.ai/details/publication/pub.1058610447
89 rdf:type schema:CreativeWork
90 https://doi.org/10.1093/nar/gkg375 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016134561
91 rdf:type schema:CreativeWork
92 https://doi.org/10.1104/pp.102.017855 schema:sameAs https://app.dimensions.ai/details/publication/pub.1002448690
93 rdf:type schema:CreativeWork
94 https://doi.org/10.1104/pp.103.025015 schema:sameAs https://app.dimensions.ai/details/publication/pub.1026344582
95 rdf:type schema:CreativeWork
96 https://doi.org/10.1104/pp.123.2.439 schema:sameAs https://app.dimensions.ai/details/publication/pub.1023566091
97 rdf:type schema:CreativeWork
98 https://doi.org/10.1104/pp.126.2.480 schema:sameAs https://app.dimensions.ai/details/publication/pub.1020427250
99 rdf:type schema:CreativeWork
100 https://doi.org/10.1111/j.1365-313x.2004.02088.x schema:sameAs https://app.dimensions.ai/details/publication/pub.1001178142
101 rdf:type schema:CreativeWork
102 https://doi.org/10.1126/science.1117389 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010697532
103 rdf:type schema:CreativeWork
104 https://doi.org/10.1126/science.3353714 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062609115
105 rdf:type schema:CreativeWork
106 https://www.grid.ac/institutes/grid.425600.5 schema:Organization
 




Preview window. Press ESC to close (or click here)


...