Quantum computing with acceptor-based qubits


Ontology type: sgo:Patent     


Patent Info

DATE

2017-06-27T00:00

AUTHORS

Sven ROGGE , Joseph SALFI , Jan Andries MOL

ABSTRACT

A quantum computer comprises of at least one qubit formed from holes created with acceptor atoms (10) in crystalline silicon (12) and a pair of gates (14, 16) located above the acceptor atoms (10) to apply direct electric field and alternating electric field for switching, manipulating the qubit such that quantum information resulting from being manipulated is stored from decoherence. More... »

Related SciGraph Publications

JSON-LD is the canonical representation for SciGraph data.

TIP: You can open this SciGraph record using an external JSON-LD service: JSON-LD Playground Google SDTT

[
  {
    "@context": "https://springernature.github.io/scigraph/jsonld/sgcontext.json", 
    "about": [
      {
        "id": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/2415", 
        "inDefinedTermSet": "http://purl.org/au-research/vocabulary/anzsrc-for/2008/", 
        "type": "DefinedTerm"
      }
    ], 
    "author": [
      {
        "name": "Sven ROGGE", 
        "type": "Person"
      }, 
      {
        "name": "Joseph SALFI", 
        "type": "Person"
      }, 
      {
        "name": "Jan Andries MOL", 
        "type": "Person"
      }
    ], 
    "citation": [
      {
        "id": "sg:pub.10.1038/nnano.2011.234", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1000841662", 
          "https://doi.org/10.1038/nnano.2011.234"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009120461", 
          "https://doi.org/10.1038/nphys475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nphys475", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1009120461", 
          "https://doi.org/10.1038/nphys475"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nmat1936", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1010934252", 
          "https://doi.org/10.1038/nmat1936"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nature10681", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1016886986", 
          "https://doi.org/10.1038/nature10681"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(63)90087-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040406147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1016/0022-3697(63)90087-8", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1040406147"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "sg:pub.10.1038/nnano.2012.21", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1046047952", 
          "https://doi.org/10.1038/nnano.2012.21"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.1646", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559059"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.6199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.6199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.44.6199", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060559789"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.4561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.4561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevb.50.4561", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060573895"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.25.1660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.25.1660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.25.1660", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060773866"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1103/physrevlett.69.1580", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1060805264"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1116/1.3498739", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062175083"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1148092", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062456453"
        ], 
        "type": "CreativeWork"
      }, 
      {
        "id": "https://doi.org/10.1126/science.1173684", 
        "sameAs": [
          "https://app.dimensions.ai/details/publication/pub.1062460125"
        ], 
        "type": "CreativeWork"
      }
    ], 
    "datePublished": "2017-06-27T00:00", 
    "description": "

A quantum computer comprises of at least one qubit formed from holes created with acceptor atoms (10) in crystalline silicon (12) and a pair of gates (14, 16) located above the acceptor atoms (10) to apply direct electric field and alternating electric field for switching, manipulating the qubit such that quantum information resulting from being manipulated is stored from decoherence.

", "id": "sg:patent.US-9691033-B2", "keywords": [ "quantum", "acceptor", "quantum computer", "qubits", "hole", "crystalline silicon", "pair", "gate", "electric field", "switching", "quantum information", "decoherence" ], "name": "Quantum computing with acceptor-based qubits", "recipient": [ { "id": "https://www.grid.ac/institutes/grid.1005.4", "type": "Organization" } ], "sameAs": [ "https://app.dimensions.ai/details/patent/US-9691033-B2" ], "sdDataset": "patents", "sdDatePublished": "2019-04-18T10:20", "sdLicense": "https://scigraph.springernature.com/explorer/license/", "sdPublisher": { "name": "Springer Nature - SN SciGraph project", "type": "Organization" }, "sdSource": "s3://com-uberresearch-data-patents-target-20190320-rc/data/sn-export/402f166718b70575fb5d4ffe01f064d1/0000100128-0000352499/json_export_01490.jsonl", "type": "Patent" } ]
 

Download the RDF metadata as:  json-ld nt turtle xml License info

HOW TO GET THIS DATA PROGRAMMATICALLY:

JSON-LD is a popular format for linked data which is fully compatible with JSON.

curl -H 'Accept: application/ld+json' 'https://scigraph.springernature.com/patent.US-9691033-B2'

N-Triples is a line-based linked data format ideal for batch operations.

curl -H 'Accept: application/n-triples' 'https://scigraph.springernature.com/patent.US-9691033-B2'

Turtle is a human-readable linked data format.

curl -H 'Accept: text/turtle' 'https://scigraph.springernature.com/patent.US-9691033-B2'

RDF/XML is a standard XML format for linked data.

curl -H 'Accept: application/rdf+xml' 'https://scigraph.springernature.com/patent.US-9691033-B2'


 

This table displays all metadata directly associated to this object as RDF triples.

89 TRIPLES      15 PREDICATES      40 URIs      20 LITERALS      2 BLANK NODES

Subject Predicate Object
1 sg:patent.US-9691033-B2 schema:about anzsrc-for:2415
2 schema:author N70ff49a78b6745fd822fd975cdb99720
3 schema:citation sg:pub.10.1038/nature10681
4 sg:pub.10.1038/nmat1936
5 sg:pub.10.1038/nnano.2011.234
6 sg:pub.10.1038/nnano.2012.21
7 sg:pub.10.1038/nphys475
8 https://doi.org/10.1016/0022-3697(63)90087-8
9 https://doi.org/10.1103/physrevb.44.1646
10 https://doi.org/10.1103/physrevb.44.6199
11 https://doi.org/10.1103/physrevb.50.4561
12 https://doi.org/10.1103/physrevlett.25.1660
13 https://doi.org/10.1103/physrevlett.69.1580
14 https://doi.org/10.1116/1.3498739
15 https://doi.org/10.1126/science.1148092
16 https://doi.org/10.1126/science.1173684
17 schema:datePublished 2017-06-27T00:00
18 schema:description <p id="p-0001" num="0000">A quantum computer comprises of at least one qubit formed from holes created with acceptor atoms (<b>10</b>) in crystalline silicon (<b>12</b>) and a pair of gates (<b>14, 16</b>) located above the acceptor atoms (<b>10</b>) to apply direct electric field and alternating electric field for switching, manipulating the qubit such that quantum information resulting from being manipulated is stored from decoherence.</p>
19 schema:keywords acceptor
20 crystalline silicon
21 decoherence
22 electric field
23 gate
24 hole
25 pair
26 quantum
27 quantum computer
28 quantum information
29 qubits
30 switching
31 schema:name Quantum computing with acceptor-based qubits
32 schema:recipient https://www.grid.ac/institutes/grid.1005.4
33 schema:sameAs https://app.dimensions.ai/details/patent/US-9691033-B2
34 schema:sdDatePublished 2019-04-18T10:20
35 schema:sdLicense https://scigraph.springernature.com/explorer/license/
36 schema:sdPublisher N5308228a0dcf4714b7663d4ce56d4ed0
37 sgo:license sg:explorer/license/
38 sgo:sdDataset patents
39 rdf:type sgo:Patent
40 N0543d566fac147ee81f6184330bdd354 schema:name Joseph SALFI
41 rdf:type schema:Person
42 N5308228a0dcf4714b7663d4ce56d4ed0 schema:name Springer Nature - SN SciGraph project
43 rdf:type schema:Organization
44 N542150e5dccf46789cde16914317f316 rdf:first N9e73e1158f1740248e83653bb8c55e26
45 rdf:rest rdf:nil
46 N70ff49a78b6745fd822fd975cdb99720 rdf:first Nb3a2e1b306d8485ca65c5ac1e7884517
47 rdf:rest Nc7300d2d818545a5bf901cbbf8db504b
48 N9e73e1158f1740248e83653bb8c55e26 schema:name Jan Andries MOL
49 rdf:type schema:Person
50 Nb3a2e1b306d8485ca65c5ac1e7884517 schema:name Sven ROGGE
51 rdf:type schema:Person
52 Nc7300d2d818545a5bf901cbbf8db504b rdf:first N0543d566fac147ee81f6184330bdd354
53 rdf:rest N542150e5dccf46789cde16914317f316
54 anzsrc-for:2415 schema:inDefinedTermSet anzsrc-for:
55 rdf:type schema:DefinedTerm
56 sg:pub.10.1038/nature10681 schema:sameAs https://app.dimensions.ai/details/publication/pub.1016886986
57 https://doi.org/10.1038/nature10681
58 rdf:type schema:CreativeWork
59 sg:pub.10.1038/nmat1936 schema:sameAs https://app.dimensions.ai/details/publication/pub.1010934252
60 https://doi.org/10.1038/nmat1936
61 rdf:type schema:CreativeWork
62 sg:pub.10.1038/nnano.2011.234 schema:sameAs https://app.dimensions.ai/details/publication/pub.1000841662
63 https://doi.org/10.1038/nnano.2011.234
64 rdf:type schema:CreativeWork
65 sg:pub.10.1038/nnano.2012.21 schema:sameAs https://app.dimensions.ai/details/publication/pub.1046047952
66 https://doi.org/10.1038/nnano.2012.21
67 rdf:type schema:CreativeWork
68 sg:pub.10.1038/nphys475 schema:sameAs https://app.dimensions.ai/details/publication/pub.1009120461
69 https://doi.org/10.1038/nphys475
70 rdf:type schema:CreativeWork
71 https://doi.org/10.1016/0022-3697(63)90087-8 schema:sameAs https://app.dimensions.ai/details/publication/pub.1040406147
72 rdf:type schema:CreativeWork
73 https://doi.org/10.1103/physrevb.44.1646 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060559059
74 rdf:type schema:CreativeWork
75 https://doi.org/10.1103/physrevb.44.6199 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060559789
76 rdf:type schema:CreativeWork
77 https://doi.org/10.1103/physrevb.50.4561 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060573895
78 rdf:type schema:CreativeWork
79 https://doi.org/10.1103/physrevlett.25.1660 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060773866
80 rdf:type schema:CreativeWork
81 https://doi.org/10.1103/physrevlett.69.1580 schema:sameAs https://app.dimensions.ai/details/publication/pub.1060805264
82 rdf:type schema:CreativeWork
83 https://doi.org/10.1116/1.3498739 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062175083
84 rdf:type schema:CreativeWork
85 https://doi.org/10.1126/science.1148092 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062456453
86 rdf:type schema:CreativeWork
87 https://doi.org/10.1126/science.1173684 schema:sameAs https://app.dimensions.ai/details/publication/pub.1062460125
88 rdf:type schema:CreativeWork
89 https://www.grid.ac/institutes/grid.1005.4 schema:Organization
 




Preview window. Press ESC to close (or click here)


...